Adriani G, Ma D, Pavesi A, Kamm RD, Goh ELK (2017) A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier. Lab Chip 17:448–459. https://doi.org/10.1039/c6lc00638h
Article CAS PubMed Google Scholar
Antoine M, Tag CG, Wirz W, Borkham-Kamphorst E, Sawitza I, Gressner AM, Kiefer P (2005) Upregulation of Pleiotrophin expression in rat hepatic stellate cells by PDGF and hypoxia: implications for its role in experimental biliary liver fibrogenesis. Biochem Biophys Res Commun 337:1153–1164. https://doi.org/10.1016/j.bbrc.2005.09.173
Article CAS PubMed Google Scholar
Apátiga-Pérez R, Soto-Rojas LO, Campa-Córdoba BB, Luna-Viramontes NI, Cuevas E, Villanueva-Fierro I, Ontiveros-Torres MA, Bravo-Muñoz M, Flores-Rodríguez P, Garcés-Ramirez L, de la Cruz F, Montiel-Sosa JF, Pacheco-Herrero M, Luna-Muñoz J (2022) Neurovascular dysfunction and vascular amyloid accumulation as early events in alzheimer’s disease. Metab Brain Dis 37:39–50. https://doi.org/10.1007/s11011-021-00814-4
Article CAS PubMed Google Scholar
Bell RD, Winkler EA, Sagare AP, Singh I, Larue B, Deane R, Zlokovic BV (2011) Pericytes control key neurovascular functions and neuronal. Neuron 68:409–427. https://doi.org/10.1016/j.neuron.2010.09.043.Pericytes
Bernard-Patrzynski F, Lécuyer MA, Puscas I, Boukhatem I, Charabati M, Bourbonnière L, Ramassamy C, Leclair G, Prat A, Roullin VG (2019) Isolation of endothelial cells, pericytes and astrocytes from mouse brain. PLoS ONE 14:1–20. https://doi.org/10.1371/journal.pone.0226302
Berthiaume AA, Shih AY (2019) Sharpening the tools for pericyte research. Nat Neurosci 22:1041–1043. https://doi.org/10.1038/s41593-019-0437-9
Article CAS PubMed Google Scholar
Berthiaume AA, Grant RI, McDowell KP, Underly RG, Hartmann DA, Levy M, Bhat NR, Shih AY (2018) Dynamic remodeling of pericytes in vivo maintains capillary coverage in the adult mouse brain. Cell Rep 22:8–16. https://doi.org/10.1016/j.celrep.2017.12.016
Article CAS PubMed PubMed Central Google Scholar
Brown LS, Foster CG, Courtney JM, King NE, Howells DW, Sutherland BA (2019) Pericytes and neurovascular function in the healthy and diseased brain. Front Cell Neurosci 13:1–9. https://doi.org/10.3389/fncel.2019.00282
Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature. https://doi.org/10.1038/nature10144
Article PubMed PubMed Central Google Scholar
Clark AT, Abrahamson EE, Harper MM, Ikonomovic MD (2022) Chronic effects of blast injury on the microvasculature in a Transgenic mouse model of alzheimer’s disease related Aβ amyloidosis. Fluids Barriers CNS 19:1–15. https://doi.org/10.1186/s12987-021-00301-z
Custodia A, Ouro A, Romaus-Sanjurjo D, Pías-Peleteiro JM, de Vries HE, Castillo J, Sobrino T (2022) Endothelial progenitor cells and vascular alterations in alzheimer’s disease. Front Aging Neurosci 13:1–11. https://doi.org/10.3389/fnagi.2021.811210
Diffley JM, Wu M, Sohn M, Song W, Hammad SM, Lyons TJ (2009) Apoptosis induction by oxidized glycated LDL in human retinal capillary pericytes is independent of activation of MAPK signaling pathways. Mol Vis 15:135–145
CAS PubMed PubMed Central Google Scholar
Fernández-Calle R, Vicente-Rodríguez M, Gramage E, Pita J, Pérez-García C, Ferrer-Alcón M, Uribarri M, Ramos MP, Herradón G (2017) Pleiotrophin regulates microglia-mediated neuroinflammation. J Neuroinflammation 14:1–10. https://doi.org/10.1186/s12974-017-0823-8
Fernández-Calle R, Galán-Llario M, Gramage E, Zapatería B, Vicente-Rodríguez M, Zapico JM, de Pascual-Teresa B, Ramos A, Ramos-Álvarez MP, Uribarri M, Ferrer-Alcón M, Herradón G (2020) Role of RPTPβ/ζ in neuroinflammation and microglia-neuron communication. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-76415-5
Fisher RA, Miners JS, Love S (2022) Pathological changes within the cerebral vasculature in alzheimer’s disease: new perspectives. Brain Pathol 32:1–23. https://doi.org/10.1111/bpa.13061
Gireud-Goss M, Mack AF, McCullough LD, Urayama A (2021) Cerebral amyloid angiopathy and Blood-Brain barrier dysfunction. Neuroscientist 27:668–684. https://doi.org/10.1177/1073858420954811
Article CAS PubMed Google Scholar
Herzig MC, Winkler DT, Burgermeister P, Pfeifer M, Kohler E, Schmidt SD, Danner S, Abramowski D, Stürchler-Pierrat C, Bürki K, Van Duinen SG, Maat-Schieman MLC, Staufenbiel M, Mathews PM, Jucker M (2004) Aβ is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat Neurosci 7:954–960. https://doi.org/10.1038/nn1302
Article CAS PubMed Google Scholar
Hu M, Li T, Ma X, Liu S, Li C, Huang Z, Lin Y, Wu R, Wang S, Lu D, Lu T, Men X, Shen S, Huang H, Liu Y, Song K, Jian B, Jiang Y, Qiu W, Liu Q, Lu Z, Cai W (2023) Macrophage lineage cells-derived migrasomes activate complement-dependent blood-brain barrier damage in cerebral amyloid angiopathy mouse model. Nat Commun 14:3945. https://doi.org/10.1038/s41467-023-39693-x
Article CAS PubMed PubMed Central Google Scholar
Iloun P, Hooshmandi E, Gheibi S, Kashfi K, Ghasemi R, Ahmadiani A (2021) Roles and interaction of the MAPK signaling cascade in Aβ25–35-Induced neurotoxicity using an isolated primary hippocampal cell culture system. Cell Mol Neurobiol 41:1497–1507. https://doi.org/10.1007/s10571-020-00912-4
Article CAS PubMed Google Scholar
Kelly JJ, Moore TM, Babal P, Diwan AH, Stevens T, Thompson WJ (1998) Pulmonary microvascular and macrovascular endothelial cells: differential regulation of Ca2 + and permeability. Am J Physiol - Lung Cell Mol Physiol 274:L810. https://doi.org/10.1152/ajplung.1998.274.5.l810
Kirabali T, Rigotti S, Siccoli A, Liebsch F, Shobo A, Hock C, Nitsch RM, Multhaup G, Kulic L (2019) The amyloid-β degradation intermediate Aβ34 is pericyte-associated and reduced in brain capillaries of patients with alzheimer’s disease. Acta Neuropathol Commun 7:1–14. https://doi.org/10.1186/s40478-019-0846-8
Klakotskaia D, Agca C, Richardson RA, Stopa EG, Schachtman TR, Agca Y (2018) Memory deficiency, cerebral amyloid angiopathy, and amyloid-β plaques in APP + PS1 double Transgenic rat model of alzheimer’s disease. PLoS ONE 13:1–16. https://doi.org/10.1371/journal.pone.0195469
Krellman JW, Ruiz HH, Marciano VA, Mondrow B, Croll SD (2014) Behavioral and neuroanatomical abnormalities in Pleiotrophin knockout mice. PLoS ONE 9. https://doi.org/10.1371/journal.pone.0100597
Levit A, Hachinski V, Whitehead SN (2020) Neurovascular unit dysregulation, white matter disease, and executive dysfunction: the shared triad of vascular cognitive impairment and alzheimer disease. GeroScience 42:445–465. https://doi.org/10.1007/s11357-020-00164-6
Article PubMed PubMed Central Google Scholar
Li YY, Guo DD, Duan RN, Li Y (2024) Interactions between Beta-Amyloid and pericytes in alzheimer’s disease. Front Biosci - Landmark 29. https://doi.org/10.31083/j.fbl2904136
Ma Q, Zhao Z, Sagare AP, Wu Y, Wang M, Owens NC, Verghese PB, Herz J, Holtzman DM, Zlokovic BV (2018) Blood-brain barrier-associated pericytes internalize and clear aggregated amyloid-β42 by LRP1-dependent Apolipoprotein e isoform-specific mechanism. Mol Neurodegener 13:1–13. https://doi.org/10.1186/s13024-018-0286-0
Mayo JN, Bearden SE (2015) Driving the Hypoxia-Inducible pathway in human pericytes promotes vascular density in an Exosome-Dependent manner. https://doi.org/10.1111/micc.12227. Microcirculation 22
Mészáros Á, Molnár K, Nógrádi B, Hernádi Z, Nyúl-Tóth Á, Wilhelm I, Krizbai IA (2020) Neurovascular Inflammaging Health Disease Cells 9:1–23. https://doi.org/10.3390/cells9071614
Miao J, Ding M, Zhang A, Xiao Z, Qi W, Luo N, Di W, Tao Y, Fang Y (2012) Pleiotrophin promotes microglia proliferation and secretion of neurotrophic factors by activating extracellular signal-regulated kinase 1/2 pathway. Neurosci Res 74:269–276. https://doi.org/10.1016/j.neures.2012.09.001
Article CAS PubMed Google Scholar
Miners JS, Schulz I, Love S (2018) Differing associations between Aβ accumulation, hypoperfusion, blood–brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in alzheimer’s disease. J Cereb Blood Flow Metab 38:103–115. https://doi.org/10.1177/0271678X17690761
Article CAS PubMed Google Scholar
Muir RT, Ismail Z, Black SE, Smith EE (2024) Comparative methods for quantifying plasma biomarkers in alzheimer’s disease: implications for the next frontier in cerebral amyloid angiopathy diagnostics. Alzheimer’s Dement 20:1436–1458. https://doi.org/10.1002/alz.13510
Comments (0)