Altintas MM, Moriwaki K, Wei C et al (2014) Reduction of proteinuria through podocyte alkalinization. J Biol Chem 289(25):17454–17467. https://doi.org/10.1074/jbc.M114.568998
Article CAS PubMed PubMed Central Google Scholar
Batissoco A, Salazar-Silva R, Oiticica J et al (2018) A cell junctional protein network associated with Connexin-26. Int J Mol Sci 19:2535. https://doi.org/10.3390/ijms19092535
Article CAS PubMed PubMed Central Google Scholar
Bertinato J, Swist E, Plouffe LJ et al (2008) Ctr2 is partially localized to the plasma membrane and stimulates copper uptake in COS-7 cells. Biochem J 409(3):731–740. https://doi.org/10.1042/BJ20071025
Article CAS PubMed Google Scholar
Beyer EC, Berthoud VM (2018) Gap junction gene and protein families: connexins, innexins, and pannexins. Biochim Biophys Acta 1860(1):5–8. https://doi.org/10.1016/j.bbamem.2017.05.016
Cetin-Ferra S, Francis SC, Cooper AT et al (2023) Mitochondrial connexins and mitochondrial contact sites with gap junction structure. Int J Mol Sci 24(10):9036. https://doi.org/10.3390/ijms24109036
Article CAS PubMed PubMed Central Google Scholar
Chatelain FC, Bichet D, Douguet D et al (2012) TWIK1, a unique background channel with variable ion selectivity. Proc Natl Acad Sci USA 109(14):5499–5504. https://doi.org/10.1073/pnas.1201132109
Article PubMed PubMed Central Google Scholar
Chaudhry FA, Reimer RJ, Krizaj D et al (1999) Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell 99(7):769–780. https://doi.org/10.1016/s0092-8674(00)81674-8
Article CAS PubMed Google Scholar
Chen Q, Wei T (2022) Membrane and nuclear yeast two-hybrid systems. Methods Mol Biol 2400:93–104. https://doi.org/10.1007/978-1-0716-1835-6_10
Article CAS PubMed Google Scholar
Chen S, Xu K, Xie L et al (2018) The spatial distribution pattern of Connexin26 expression in supporting cells and its role in outer hair cell survival. Cell Death Dis 9(12):1180. https://doi.org/10.1038/s41419-018-1238-x
Article CAS PubMed PubMed Central Google Scholar
Choi JH, Yarishkin O, Kim E et al (2018) TWIK-1/TASK-3 heterodimeric channels contribute to the neurotensin-mediated excitation of hippocampal dentate gyrus granule cells. Exp Mol Med 50(11):1–13. https://doi.org/10.1038/s12276-018-0172-4
Article CAS PubMed PubMed Central Google Scholar
Cina C, Bechberger JF, Ozog MA et al (2007) Expression of connexins in embryonic mouse neocortical development. J Comp Neurol 504(3):298–313. https://doi.org/10.1002/cne.21426
Article CAS PubMed Google Scholar
Dally S, Bredoux R, Corvazier E et al (2006) Ca2+-ATPases in non-failing and failing heart: evidence for a novel cardiac sarco/endoplasmic reticulum Ca2+-ATPase 2 isoform (SERCA2c). Biochem J 395(2):249–258. https://doi.org/10.1042/BJ20051427
Article CAS PubMed PubMed Central Google Scholar
del Castillo I, Villamar M, Moreno-Pelayo MA, del Castillo FJ et al (2002) A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. N Engl J Med 346(4):243–249. https://doi.org/10.1056/NEJMoa012052
del Castillo FJ, Rodríguez-Ballesteros M, Alvarez A et al (2005) A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. J Med Genet 42(7):588–594. https://doi.org/10.1136/jmg.2004.028324
Article CAS PubMed PubMed Central Google Scholar
del Castillo FJ, Cohen-Salmon M, Charollais A et al (2010) Consortin, a trans-Golgi network cargo receptor for the plasma membrane targeting and recycling of connexins. Hum Mol Genet 19(2):262–275. https://doi.org/10.1093/hmg/ddp490
Article CAS PubMed Google Scholar
Dieterich IA, Lawton AJ, Peng Y et al (2019) Acetyl-CoA flux regulates the proteome and acetyl-proteome to maintain intracellular metabolic crosstalk. Nat Commun 10:3929. https://doi.org/10.1038/s41467-019-11866-6
Article PubMed PubMed Central Google Scholar
Dutta S, Teresinski HJ, Smith MD (2014) A split-ubiquitin yeast two-hybrid screen to examine the substrate specificity of atToc159 and atToc132, two Arabidopsis chloroplast preprotein import receptors. PLoS One 9(4):e95026. https://doi.org/10.1371/journal.pone.0095026
Article PubMed PubMed Central Google Scholar
Duvaud S, Gabella C, Lisacek F et al (2021) Expasy, the Swiss bioinformatics resource portal, as designed by its users. Nucleic Acids Res 49(W1):W216–W227. https://doi.org/10.1093/nar/gkab225
Article CAS PubMed PubMed Central Google Scholar
Esseltine JL, Laird DW (2016) Next-generation connexin and pannexin cell biology. Trends Cell Biol 26(12):1–13. https://doi.org/10.1016/j.tcb.2016.06.003
Fei YJ, Sugawara M, Nakanishi T et al (2000) Primary structure, genomic organization, and functional and electrogenic characteristics of human system N 1, a Na+- and H+-coupled glutamine transporter. J Biol Chem 275(31):23707–23717. https://doi.org/10.1074/jbc.M002282200
Article CAS PubMed Google Scholar
Gargano MA, Matentzoglu N, Coleman B et al (2024) The human phenotype ontology in 2024: phenotypes around the world. Nucleic Acids Res 52(D1):D1333–D1346. https://doi.org/10.1093/nar/gkad1005
Article CAS PubMed Google Scholar
Gu S, Olszewski R, Taukulis I et al (2020) Characterization of rare spindle and root cell transcriptional profiles in the stria vascularis of the adult mouse cochlea. Sci Rep 10(1):18100. https://doi.org/10.1038/s41598-020-75238-8
Article CAS PubMed PubMed Central Google Scholar
Hakuba N, Koga K, Gyo K et al (2000) Exacerbation of noise-induced hearing loss in mice lacking the glutamate transporter GLAST. J Neurosci 20(23):8750–8753. https://doi.org/10.1523/JNEUROSCI.20-23-08750.2000
Article CAS PubMed PubMed Central Google Scholar
Halestrap AP (2013) The SLC16 gene family—structure, role, and regulation. IUBMB Life 65(1):1–9. https://doi.org/10.1002/iub.1100
Henzl MT, Thalmann I, Larson JD et al (2004) The cochlear F-box protein OCP1 associates with OCP2 and connexin 26. Hear Res 191(1–2):101–109. https://doi.org/10.1016/j.heares.2004.01.005
Article CAS PubMed Google Scholar
Hullinger R, Li M, Wang J et al (2016) Increased expression of AT-1/SLC33A1 causes an autistic-like phenotype in mice by affecting dendritic branching and spine formation. J Exp Med 213(7):1267–1284. https://doi.org/10.1084/jem.20151776
Article CAS PubMed PubMed Central Google Scholar
Huppke P, Brendel C, Kalscheuer V et al (2012) Mutations in SLC33A1 cause a lethal autosomal-recessive disorder with congenital cataracts, hearing loss, and low serum copper and ceruloplasmin. Am J Hum Genet 90(1):61–68. https://doi.org/10.1016/j.ajhg.2011.11.030
Article CAS PubMed PubMed Central Google Scholar
Jacob T, Annusver K, Czarnewski P et al (2023) Mol
Comments (0)