Study of Metabolic Plasticity of the Brain in Animals with Modeled Parkinson’s Disease

Surmeier, D.J., Obeso, J.A., and Halliday, G.M., Selective neuronal vulnerability in Parkinson disease, Nat. Rev. Neurosci., 2017, vol. 18, no. 2, pp. 101–113. https://doi.org/10.1038/nrn.2016.178

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schapira, A.H. and Jenner, P., Etiology and pathogenesis of Parkinson’s disease, Mov. Disord., 2011, vol. 26, no. 6, pp. 1049–1055. https://doi.org/10.1002/mds.23732

Article  PubMed  Google Scholar 

Tansey, M.G. and Goldberg, M.S., Neuroinflammation in Parkinson’s disease: Its role in neuronal death and implications for therapeutic intervention, Neurobiol. Dis., 2010, vol. 37, no. 3, pp. 510–518. https://doi.org/10.1016/j.nbd.2009.11.004

Article  CAS  PubMed  Google Scholar 

Schapira, A.H.V., Mitochondrial pathology in Parkinson’s disease, Mt. Sinai J. Med., 2011, vol. 78, no. 6, pp. 872–881. https://doi.org/10.1002/msj.20303

Article  PubMed  Google Scholar 

Guranova, N.I., Dar’in, D., Kantin, G., Novikov, A.S., Bakulina, O., and Krasavin, M., Rh(II)-catalyzed spirocyclization of α-diazo homophthalimides with cyclic ethers, J. Org. Chem., 2019, vol. 84, no. 7, pp. 4534–4542. https://doi.org/10.1021/acs.joc.9b00245

Article  CAS  PubMed  Google Scholar 

Reutskaya, E., Osipyan, A., Sapegin, A., Novikov, A.S., and Krasavin, M., Rethinking hydrolytic imidazoline ring expansion: A common approach to the preparation of medium-sized rings via side-chain insertion into [1.4]oxa- and [1.4]thiazepinone scaffolds, J. Org. Chem., 2019, vol. 84, no. 4, pp. 1693–1705. https://doi.org/10.1021/acs.joc.8b02805

Article  CAS  PubMed  Google Scholar 

Osipyan, A., Sapegin, A., Novikov, A.S., and Krasavin, M., Rare medium-sized rings prepared via hydrolytic imidazoline ring expansion (HIRE), J. Org. Chem., 2018, vol. 83, no. 17, pp. 9707–9717. https://doi.org/10.1021/acs.joc.8b01210

Article  CAS  PubMed  Google Scholar 

Baykov, S.V., et al., π–π noncovalent interaction involving 1,2,4- and 1,3,4-oxadiazole systems: The combined experimental, theoretical, and database study, Molecules, 2021, vol. 26, no. 18, p. 5672. https://doi.org/10.3390/molecules26185672

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kulish, K.I., Alexander S. Novikov, Peter M. Tolstoy, et al., Solid state and dynamic solution structures of O‑carbamidine amidoximes gives further insight into the mechanism of zinc(II)-mediated generation of 1,2,4-oxadiazoles, J. Mol. Struct., 2016, vol. 1111, pp. 142–150. https://doi.org/10.1016/j.molstruc.2016.01.038

Article  CAS  Google Scholar 

Novikov, A.S., Kuznetsov, M.L., and Pombeiro, A.J.L., Theory of the formation and decomposition of N-heterocyclic aminooxycarbenes through metal-assisted [2+3]-dipolar cycloaddition/retro-cycloaddition, Chem.—Eur. J., 2013, vol. 19, no. 8, pp. 2874–2888. https://doi.org/10.1002/chem.201203098

Article  CAS  PubMed  Google Scholar 

Novikov, A.S. and Kuznetsov, M.L., Theoretical study of Re(IV) and Ru(II) bis-isocyanide complexes and their reactivity in cycloaddition reactions with nitrones, Inorg. Chim. Acta, 2012, vol. 380, pp. 78–89. https://doi.org/10.1016/j.ica.2011.08.016

Article  CAS  Google Scholar 

Magistretti, P.J. and Allaman, I., A cellular perspective on brain energy metabolism and functional imaging, Neuron, 2015, vol. 86, no. 4, pp. 883–901. https://doi.org/10.1016/j.neuron.2015.03.035

Article  CAS  PubMed  Google Scholar 

Lauritzen, K.H., Morland, C., Puchades, M., et al., Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism, Cerebral Cortex, 2014, vol. 24, no. 10, pp. 2784–2795. https://doi.org/10.1093/cercor/bht136

Article  PubMed  Google Scholar 

Kennedy, L., Glesaaen, E.R., Palibrk, V., et al., Lactate receptor HCAR1 regulates neurogenesis and microglia activation after neonatal hypoxia-ischemia, Elife, 2022, vol. 11, p. e76451. https://doi.org/10.7554/eLife.76451

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohammad Nezhady, M.A., Cagnone, G., Joyal, J.-S., and Chemtob, S., Lack of HCAR1, the lactate GPCR, signaling promotes autistic-like behavior, Cell Commun. Signaling, 2023, vol. 21, no. 1, p. 196. https://doi.org/10.1186/s12964-023-01188-z

Article  CAS  Google Scholar 

Morland, C., Lauritzen, K.H., Puchades, M., et al., The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: Expression and action in brain, J. Neurosci. Res., 2015, vol. 93, no. 7, pp. 1045–1055. https://doi.org/10.1002/jnr.23593

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif