Anton-Erxleben F, Langer H (1988) Functional morphology of the ommatidia in the compound eye of the moth, Antheraea polyphemus (Insecta, Saturniidae). Cell Tissue Res 252:385–396. https://doi.org/10.1007/BF00214381
Article CAS PubMed Google Scholar
Arikawa K (2003) Spectral organization of the eye of a butterfly, Papilio. J Comp Physiol Sens Neural Behav Physiol 189:791–800. https://doi.org/10.1007/s00359-003-0454-7
Arikawa K (2017) The eyes and vision of butterflies. J Physiol 595:5457–5464. https://doi.org/10.1113/JP273917
Article CAS PubMed PubMed Central Google Scholar
Arikawa K, Stavenga DG (1997) Random array of colour filters in the eyes of butterflies. J Exp Biol 200:2501–2506. https://doi.org/10.1242/jeb.200.19.2501
Article CAS PubMed Google Scholar
Arikawa K, Uchiyama H (1996) Red receptors dominate the proximal tier of the retina in the butterfly Papilio xuthus. J Comp Physiol A 178:55–61. https://doi.org/10.1007/BF00189590
Arikawa K, Inokuma K, Eguchi E (1987) Pentachromatic visual system in a butterfly. Naturwissenschaften 74:297–298. https://doi.org/10.1007/BF00366422
Arikawa K, Scholten DGW, Kinoshita M, Stavenga DG (1999) Tuning of photoreceptor spectral sensitivities by red and yellow pigments in the butterfly Papilio xuthus. Zoolog Sci 16:17–24. https://doi.org/10.2108/zsj.16.17
Arikawa K, Mizuno S, Kinoshita M, Stavenga DG (2003) Coexpression of two visual pigments in a photoreceptor causes an abnormally broad spectral sensitivity in the eye of the butterfly Papilio xuthus. J Neurosci 23:4527–4532. https://doi.org/10.1523/JNEUROSCI.23-11-04527.2003
Article CAS PubMed PubMed Central Google Scholar
Arikawa K, Wakakuwa M, Qiu X et al (2005) Sexual dimorphism of Short-Wavelength photoreceptors in the small white butterfly, Pieris rapae crucivora. J Neurosci 25:5935–5942. https://doi.org/10.1523/JNEUROSCI.1364-05.2005
Article CAS PubMed PubMed Central Google Scholar
Arikawa K, Pirih P, Stavenga DG (2009) Rhabdom constriction enhances filtering by the red screening pigment in the eye of the Eastern pale clouded yellow butterfly, Colias erate (Pieridae). J Exp Biol 212:2057–2064. https://doi.org/10.1242/jeb.030692
Arikawa K, Iwanaga T, Wakakuwa M, Kinoshita M (2017) Unique Temporal expression of triplicated Long-Wavelength Opsins in developing butterfly eyes. Front Neural Circuits 11:96. https://doi.org/10.3389/fncir.2017.00096
Article CAS PubMed PubMed Central Google Scholar
Arikawa K, Nakatani Y, Koshitaka H, Kinoshita M (2021) Foraging small white butterflies, Pieris rapae, search flowers using color vision. Front Ecol Evol 9:650069. https://doi.org/10.3389/fevo.2021.650069
Awata H, Wakakuwa M, Arikawa K (2009) Evolution of color vision in Pierid butterflies: blue Opsin duplication, ommatidial heterogeneity and eye regionalization in Colias erate. J Comp Physiol A 195:401–408. https://doi.org/10.1007/s00359-009-0418-7
Awata H, Matsushita A, Wakakuwa M, Arikawa K (2010) Eyes with basic dorsal and specific ventral regions in the glacial apollo, Parnassius glacialis (Papilionidae). J Exp Biol 213:4023–4029. https://doi.org/10.1242/jeb.048678
Article CAS PubMed Google Scholar
Bandai K, Arikawa K, Eguchi E (1992) Localization of spectral receptors in the Ommatidium of butterfly compound eye determined by polarization sensitivity. J Comp Physiol A 171:289–297. https://doi.org/10.1007/BF00223959
Belušič G, Šporar K, Meglič A (2017) Extreme polarization sensitivity in the retina of the corn borer moth Ostrinia. J Exp Biol 220:2047–2056. https://doi.org/10.1242/jeb.153718
Belušič G, Ilić M, Meglič A, Pirih P (2021) Red-green opponency in the long visual fibre photoreceptors of brushfoot butterflies (Nymphalidae). Proc R Soc B. https://doi.org/10.1098/RSPB.2021.1560
Article PubMed PubMed Central Google Scholar
Bernard GD, Remington CL (1991) Color vision in Lycaena butterflies: spectral tuning of receptor arrays in relation to behavioral ecology. Proc Natl Acad Sci 88:2783–2787. https://doi.org/10.1073/pnas.88.7.2783
Article CAS PubMed PubMed Central Google Scholar
Blackiston D, Briscoe AD, Weiss MR (2011) Color vision and learning in the monarch butterfly, Danaus plexippus (Nymphalidae). J Exp Biol 214:509–520. https://doi.org/10.1242/jeb.048728
Blake AJ, Pirih P, Qiu X et al (2019) Compound eyes of the small white butterfly Pieris rapae have three distinct classes of red photoreceptors. J Comp Physiol A 205:553–565. https://doi.org/10.1007/s00359-019-01330-8
Briscoe AD (2000) Six Opsins from the butterfly Papilio glaucus: molecular phylogenetic evidence for paralogous origins of Red-Sensitive visual pigments in insects. J Mol Evol 51:110–121. https://doi.org/10.1007/s002390010071
Article CAS PubMed Google Scholar
Briscoe AD (2008) Reconstructing the ancestral butterfly eye: focus on the Opsins. J Exp Biol 211:1805–1813. https://doi.org/10.1242/jeb.013045
Article CAS PubMed Google Scholar
Briscoe AD, Bernard GD (2005) Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphalini butterfly species. J Exp Biol 208:687–696. https://doi.org/10.1242/jeb.01453
Article CAS PubMed Google Scholar
Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510. https://doi.org/10.1146/annurev.ento.46.1.471
Article CAS PubMed Google Scholar
Briscoe AD, Bernard GD, Szeto AS et al (2003) Not all butterfly eyes are created equal: rhodopsin absorption spectra, molecular identification, and localization of ultraviolet-, blue‐, and green‐sensitive rhodopsin‐encoding mRNAs in the retina of Vanessa cardui. J Comp Neurol 458:334–349. https://doi.org/10.1002/cne.10582
Article CAS PubMed Google Scholar
Briscoe AD, Bybee SM, Bernard GD et al (2010) Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies. Proc Natl Acad Sci U S A 107:3628–3633
PubMed PubMed Central Google Scholar
Chakraborty M, Lara AG, Dang A et al (2023) Sex-linked gene traffic underlies the acquisition of sexually dimorphic UV color vision in Heliconius butterflies. Proc Natl Acad Sci 120:e2301411120. https://doi.org/10.1073/pnas.2301411120
Article CAS PubMed PubMed Central Google Scholar
Champlin DT, Truman JW (1998) Ecdysteroids govern two phases of eye development during metamorphosis of the moth, Manduca sexta. Development 125:2009–2018. https://doi.org/10.1242/dev.125.11.2009
Article CAS PubMed Google Scholar
Charlton-Perkins MA, Sendler ED, Buschbeck EK, Cook TA (2017) Multifunctional glial support by semper cells in the Drosophila retina. PLOS Genet 13:e1006782. https://doi.org/10.1371/journal.pgen.1006782
Article CAS PubMed PubMed Central Google Scholar
Charlton-Perkins MA, Friedrich M, Cook TA (2021) Semper’s cells in the insect compound eye: insights into ocular form and function. Dev Biol 479:126–138. https://doi.org/10.1016/J.YDBIO.2021.07.015
Comments (0)