A millisecond parameter space for phase-shifting the circadian pacemaker with near-ultraviolet light

Akpoghiran O, Strich AK, Koh K (2025) Effects of sex, mating status, and genetic background on circadian behavior in Drosophila. Front Neurosci 18:1532868. https://doi.org/10.3389/fnins.2024.1532868

Article  PubMed  PubMed Central  Google Scholar 

Altenburg E, Browning LS (1962) The mutagenic equivalence of continuous and intermittent ultraviolet in Drosophila melanogaster. Genetics 47(3):273–276. https://doi.org/10.1093/genetics/47.3.273

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alves PV, Bourscheidt V, dos Santos LOF, de Melo PRH (2025) Seasonal variations and trends in solar UV spectral irradiances based on data from the Ozone monitoring instrument at solar noon in Southern Amazonas. Brazil Remote Sens Appl: Soc Environ 37:101423. https://doi.org/10.1016/j.rsase.2024.101423

Article  Google Scholar 

Amir S, Robinson B (1995) Ultraviolet light entrains rodent suprachiasmatic nucleus pacemaker. Neuroscience 69(4):1005–1011. https://doi.org/10.1016/0306-4522(95)00393-w

Article  CAS  PubMed  Google Scholar 

Baik LS, Fogle KJ, Roberts L, Galschiodt AM, Chevez JA, Recinos Y, Nguy V, Holmes TC (2017) Cryptochrome mediates behavioral executive choice in response to UV light. Proc Natl Acad Sci USA 114(4):776–781. https://doi.org/10.1073/pnas.1607989114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baik LS, Recinos Y, Chevez JA, Au DD, Holmes TC (2019) Multiple phototransduction inputs integrate to mediate UV light-evoked avoidance/attraction behavior in Drosophila. J Biol Rhythms 34(4):391–400. https://doi.org/10.1177/0748730419847339

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berndt A, Kottke T, Breitkreuz H, Dvorsky R, Hennig S, Alexander M, Wolf E (2007) A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. J Biol Chem 282(17):13011–13021. https://doi.org/10.1074/jbc.M608872200

Article  CAS  PubMed  Google Scholar 

Brainard G, Barker F, Hoffman R, Stetson M, Hanifin J, Podolin P, Rollag M (1994) Ultraviolet regulation of neuroendocrine and circadian physiology in rodents. Vis Res 34(11):1521–1533. https://doi.org/10.1016/0042-6989(94)90154-6

Article  CAS  PubMed  Google Scholar 

Cashmore AR, Jarillo JA, Wu Y-J, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284(5415):760–765. https://doi.org/10.1126/science.284.5415.760

Article  CAS  PubMed  Google Scholar 

Chittka L, Stelzer RJ, Stanewsky R (2013) Daily changes in ultraviolet light levels can synchronize the circadian clock of bumblebees (Bombus terrestris). Chronobiol Int 30(4):434–442. https://doi.org/10.3109/07420528.2012.741168

Article  PubMed  Google Scholar 

Cronin TW, Bok MJ (2016) Photoreception and vision in the ultraviolet. J Exp Biol 219(18):2790–2801. https://doi.org/10.1242/jeb.128769

Article  PubMed  Google Scholar 

Do MTH (2019) Melanopsin and the intrinsically photosensitive retinal ganglion cells: biophysics to behavior. Neuron 104(2):205–226. https://doi.org/10.1016/j.neuron.2019.07.016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dollish HK, Kaladchibachi S, Negelspach DC, Fernandez F-X (2022) The Drosophila circadian phase response curve to light: conservation across seasonally relevant photoperiods and anchorage to sunset. Physiol Behav 245:113691. https://doi.org/10.1016/j.physbeh.2021.113691

Article  CAS  PubMed  Google Scholar 

Emery P, So WV, Kaneko M, Hall JC, Rosbash M (1998) CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95(5):669–679. https://doi.org/10.1016/s0092-8674(00)81637-2

Article  CAS  PubMed  Google Scholar 

Fernandez F (2019) Circadian responses to fragmented light: research synopsis in humans. Yale J Biol Med 92(2):337

CAS  PubMed  PubMed Central  Google Scholar 

Giebultowicz JM, Long DM (2015) Aging and circadian rhythms. Curr Opin Insect Sci 7:82–86. https://doi.org/10.1016/j.cois.2015.03.001

Article  PubMed  PubMed Central  Google Scholar 

Gronfier C, Wright KP Jr, Kronauer RE, Jewett ME, Czeisler CA (2004) Efficacy of a single sequence of intermittent bright light pulses for delaying circadian phase in humans. Am J Physiol Endocrinol Metab 287(1):E174–E181. https://doi.org/10.1152/ajpendo.00385.2003

Article  CAS  PubMed  Google Scholar 

Hall JC, Rosbash M (1987) Genes and biological rhythms. Trends Genet 3:185–191. https://doi.org/10.1016/0168-9525(87)90231-9

Article  CAS  Google Scholar 

Helfrich-Förster C (2000) Differential control of morning and evening components in the activity rhythm of Drosophila melanogaster—sex-specific differences suggest a different quality of activity. J Biol Rhythms 15(2):135–154. https://doi.org/10.1177/074873040001500208

Article  PubMed  Google Scholar 

Hermann C, Saccon R, Senthilan PR, Domnik L, Dircksen H, Yoshii T, Helfrich-Förster C (2013) The circadian clock network in the brain of different Drosophila species. J Comp Neurol 521(2):367–388. https://doi.org/10.1002/cne.23178

Article  CAS  PubMed  Google Scholar 

Joyce DS, Spitschan M, Zeitzer JM (2022) Duration invariance and intensity dependence of the human circadian system phase shifting response to brief light flashes. Proc Biol Sci 289(1970):20211943. https://doi.org/10.1098/rspb.2021.1943

Article  PubMed  PubMed Central  Google Scholar 

Kaladchibachi S, Negelspach DC, Fernandez F (2018) Circadian phase-shifting by light: beyond photons. Neurobiol Sleep Circadian Rhythms 5:8–14. https://doi.org/10.1016/j.nbscr.2018.03.003

Article  PubMed  PubMed Central  Google Scholar 

Kaladchibachi S, Negelspach DC, Zeitzer JM, Fernandez F (2019a) Optimization of circadian responses with shorter and shorter millisecond flashes. Biol Lett 15(8):20190371. https://doi.org/10.1098/rsbl.2019.0371

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaladchibachi S, Secor MA, Negelspach DC, Fernandez F (2019b) Longitudinal study of sleep and diurnal rhythms in Drosophila ananassae. Exp Gerontol 116:74–79. https://doi.org/10.1016/j.exger.2018.12.010

Article  PubMed  Google Scholar 

Kaladchibachi S, Negelspach DC, Zeitzer JM, Fernandez F-X (2022) Investigation of the aging clock’s intermittent-light responses uncovers selective deficits to green millisecond flashes. J Photochem Photobiol B 228:112389. https://doi.org/10.1016/j.jphotobiol.2022.112389

Article  CAS  PubMed  Google Scholar 

Klarsfeld A, Rouyer F (1998) Effects of circadian mutations and LD periodicity on the life span of Drosophila melanogaster. J Biol Rhythms 13(6):471–478. https://doi.org/10.1177/074873098129000309

Article  CAS  PubMed  Google Scholar 

Koh K, Evans JM, Hendricks JC, Sehgal A (2006) A drosophila model for age-associated changes in sleep: wake cycles. Proc Natl Acad Sci U S A 103(37):13843–13847. https://doi.org/10.1073/pnas.0605903103

Article  CAS  PubMed  PubMed Central  Google Scholar 

Konopka RJ, Smith RF, Orr D (1991) Characterization of Andante, a new Drosophila clock mutant, and its interactions with other clock mutants. J Neurogenet 7(2–3):103–114. https://doi.org/10.3109/01677069109066214

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif