Aliyu OM, Makinde BO. Phenotypic analysis of seed yield and yield components in cowpea (Vigna unguiculata L., Walp). Plant Breed Biotechnol. 2016;4(2):252–61. https://doi.org/10.9787/PBB.2016.4.2.252.
Arpita K, Sharma S, Srivastava H, Kumar K, Mushtaq M, Gupta P, Gaikwad K. Genome-wide survey, molecular evolution and expression analysis of auxin response factor (ARF) gene family indicating their key role in seed number per pod in pigeonpea (C. cajan L. Millsp.). Int J Biol Macromol. 2023;253: 126833.
Balanzà V, Martínez-Fernández I, Sato S, Yanofsky MF, Ferrándiz C. Inflorescence meristem fate is dependent on seed development and FRUITFULL in Arabidopsis thaliana. Front Plant Sci. 2019;10:1622.
PubMed PubMed Central Google Scholar
Bernard RL, Weiss MG. Qualitative genetics. 1973
Bohra A, Mallikarjuna N, Saxena KB, Upadhyaya HD, Vales I, Varshney RK. Harnessing the potential of crop wild relatives through genomics tools for pigeonpea improvement. J Plant Biol. 2010;37(1):83–98.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article CAS PubMed PubMed Central Google Scholar
Bommert P, Werr W. Gene expression patterns in the maize caryopsis: clues to decisions in embryo and endosperm development. Gene. 2001;271(2):131–42. https://doi.org/10.1016/S0378-1119(01)00503-0.
Article CAS PubMed Google Scholar
Chen P, Li Y, Zhao L, Hou Z, Yan M, Hu B, Qin Y. Genome-wide identification and expression profiling of ATP-binding cassette (ABC) transporter gene family in pineapple (Ananas comosus (L.) Merr.) reveal the role of AcABCG38 in pollen development. Front Plant Sci. 2017;8: 2150. https://doi.org/10.3389/fpls.2017.02150.
Article PubMed PubMed Central Google Scholar
Chen L, Li YX, Li C, Shi Y, Song Y, Zhang D, Wang T. Genome-wide analysis of the pentatricopeptide repeat gene family in different maize genomes and its important role in kernel development. BMC Plant Biol. 2018;18:1–14. https://doi.org/10.1186/s12870-018-1572-2.
Chen Y, Wang Z, Ren X, Huang L, Guo J, Zhao J, Jiang H. Identification of major QTL for seed number per pod on chromosome A05 of tetraploid peanut (Arachis hypogaea L.). Crop J. 2019;7(2):238–48.
Choi H, Jin JY, Choi S, Hwang JU, Kim YY, Suh MC, Lee Y. An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen. Plant J. 2011;65(2):181–93. https://doi.org/10.1111/j.1365-313X.2010.04412.x.
Article CAS PubMed Google Scholar
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly. 2012;6(2):80–92. https://doi.org/10.4161/fly.19695.
Article CAS PubMed PubMed Central Google Scholar
Danecek P, McCarthy SA. BCFtools/csq: haplotype-aware variant consequences. Bioinformatics. 2017;33(13):2037–9. https://doi.org/10.1093/bioinformatics/btx100.
Article CAS PubMed PubMed Central Google Scholar
Das S, Singh M, Srivastava R, Bajaj D, Saxena MS, Rana JC, Parida SK. mQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea. DNA Res. 2016;23(1):53–65.
Das A, Nigam D, Junaid A, Tribhuvan KU, Kumar K, Durgesh K, Singh NK, Gaikwad K. Expressivity of the key genes associated with seed and pod development is highly regulated via lncRNAs and miRNAs in pigeonpea. Sci Rep. 2019;9(1):18191. https://doi.org/10.1038/s41598-019-54340-6.
Article CAS PubMed PubMed Central Google Scholar
Das A, Kumar K, Tribhuvan K, Joshi R, Durgesh K, Gaikwad K. LEA genes play important role in seed and pod development in Cajanus cajan. Int J Curr Microbiol App Sci. 2019;8(10):716–26. https://doi.org/10.20546/ijcmas.2019.810.083.
Dew-Budd KJ, Chow HT, Kendall T, David BC, Rozelle JA, Mosher RA, Beilstein MA. Mating system is associated with seed phenotypes upon loss of RNA-directed DNA methylation in Brassicaceae. Plant Physiol. 2024;194(4):2136–48. https://doi.org/10.1093/plphys/kiad622.
Article CAS PubMed Google Scholar
Domingo WE, Gkooks DM. Investigations with the castor bean plant: I. Adaptation and variety tests. 1945
Erdmann RM, Picard CL. RNA-directed DNA methylation. PLoS Genet. 2020;16(10): e1009034. https://doi.org/10.1371/journal.pgen.1009034.
Article CAS PubMed PubMed Central Google Scholar
FAOSTAT. https://www.fao.org/faostat/en/#data/QCL. 2022
Fu S, Meeley R, Scanlon MJ. Empty pericarp2 encodes a negative regulator of the heat shock response and is required for maize embryogenesis. Plant Cell. 2002;14(12):3119–32. https://doi.org/10.1105/tpc.006726.
Article CAS PubMed PubMed Central Google Scholar
Funatsuki H, Ishimoto M, Tsuji H, Kawaguchi K, Hajika M, Fujino K. Simple sequence repeat markers linked to a major QTL controlling pod shattering in soybean. Plant Breed. 2006;125(2):195–7. https://doi.org/10.1111/j.1439-0523.2006.01199.x.
Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:1207.3907. 2012. https://doi.org/10.48550/arXiv.1207.3907
Gómez E, Royo J, Guo Y, Thompson R, Hueros G. Establishment of cereal endosperm expression domains: identification and properties of a maize transfer cell–specific transcription factor, ZmMRP-1. Plant Cell. 2002;14(3):599–610. https://doi.org/10.1105/tpc.010365.
Article CAS PubMed PubMed Central Google Scholar
Gutieérrez-Marcos JF, Costa LM, Biderre-Petit C, Khbaya B, O’Sullivan DM, Wormald M, Dickinson HG. Maternally expressed gene1 is a novel maize endosperm transfer cell–specific gene with a maternal parent-of-origin pattern of expression. Plant Cell. 2004;16(5):1288–301. https://doi.org/10.1105/tpc.019778.
Huang M, Liu X, Zhou Y, Summers RM, Zhang Z. BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience. 2019. https://doi.org/10.1093/gigascience/giy154.
Article PubMed PubMed Central Google Scholar
Huang M, Zhang L, Zhou L, Wang M, Yung WS, Wang Z, Lam HM. An expedient survey and characterization of the soybean JAGGED 1 (GmJAG1) transcription factor binding preference in the soybean genome by modified ChIPmentation on soybean protoplasts. Genomics. 2021;113(1):344–55.
Jain M, Moharana KC, Shankar R, Kumari R, Garg R. Genomewide discovery of DNA polymorphisms in rice cultivars with contrasting drought and salinity stress response and their functional relevance. Plant Biotechnol J. 2014;12(2):253–64. https://doi.org/10.1111/pbi.12133.
Article CAS PubMed Google Scholar
Jeong N, Moon JK, Kim HS, Kim CG, Jeong SC. Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean. Theor Appl Genet. 2011;122:865–74. https://doi.org/10.1007/s00122-010-1492-5.
Jeong N, Suh SJ, Kim MH, Lee S, Moon JK, Kim HS, Jeong SC. Ln is a key regulator of leaflet shape and number of seeds per pod in soybean. Plant Cell. 2012;24(12):4807–18. https://doi.org/10.1105/tpc.112.104968.
Article CAS PubMed PubMed Central Google Scholar
Jofuku KD, Omidyar PK, Gee Z, Okamuro JK. Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci U S A. 2005;102(8):3117–22.
CAS PubMed PubMed Central Google Scholar
Kabelka EA, Diers BW, Fehr WR, LeRoy AR, Baianu IC, You T, Nelson RL. Putative alleles for increased yield from soybean plant introductions. Crop Sci. 2004;44(3):784–91.
Kamfwa K, Cichy KA, Kelly JD. Genome-wide association study of agronomic traits in common bean. Plant Genome. 2015;8(2): plantgenome2014-09.
Kim CG, Jeong SC, Kim HS, Moon JK, Jeong NH. Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean. 2011;122(5):865–74. https://doi.org/10.1007/s00122-010-1492-5
Kretzschmar T, Burla B, Lee Y, Martinoia E, Nagy R. Functions of ABC transporters in plants. Essays Biochem. 2011;50:145–60.
Comments (0)