Hayes, J. D., Dinkova-Kostova, A. T. & Tew, K. D. Oxidative stress in cancer. Cancer Cell 38, 167–197 (2020).
Article CAS PubMed PubMed Central Google Scholar
Principe, D. R. et al. The current treatment paradigm for pancreatic ductal adenocarcinoma and barriers to therapeutic efficacy. Front. Oncol. 11, 688377 (2021).
Article CAS PubMed PubMed Central Google Scholar
Xu, Y., Liu, J., Nipper, M. & Wang, P. Ductal vs. acinar? Recent insights into identifying cell lineage of pancreatic ductal adenocarcinoma. Ann. Pancreat. Cancer 2, 11 (2019).
Article PubMed PubMed Central Google Scholar
Kopp, J. L. et al. Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer Cell 22, 737–750 (2012).
Article CAS PubMed PubMed Central Google Scholar
Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).
Article CAS PubMed Google Scholar
Tabata, T., Fujimori, T., Maeda, S., Yamamoto, M. & Saitoh, Y. The role of ras mutation in pancreatic cancer, precancerous lesions, and chronic pancreatitis. Int. J. Pancreatol. 14, 237–244 (1993).
Article CAS PubMed Google Scholar
Tada, M. et al. Analysis of K-RAS gene mutation in hyperplastic duct cells of the pancreas without pancreatic disease. Gastroenterology 110, 227–231 (1996).
Article CAS PubMed Google Scholar
Becker, A. E., Hernandez, Y. G., Frucht, H. & Lucas, A. L. Pancreatic ductal adenocarcinoma: risk factors, screening, and early detection. World J. Gastroenterol. 20, 11182–11198 (2014).
Article PubMed PubMed Central Google Scholar
Pandol, S. J., Gorelick, F. S. & Lugea, A. Environmental and genetic stressors and the unfolded protein response in exocrine pancreatic function—a hypothesis. Front. Physiol. 2, 8 (2011).
Article CAS PubMed PubMed Central Google Scholar
Makohon-Moore, A. & Iacobuzio-Donahue, C. A. Pancreatic cancer biology and genetics from an evolutionary perspective. Nat. Rev. Cancer 16, 553–565 (2016).
Article CAS PubMed PubMed Central Google Scholar
Xia, D. et al. NADPH oxidase 1 mediates caerulein-induced pancreatic fibrosis in chronic pancreatitis. Free Radic. Biol. Med. 147, 139–149 (2020).
Article CAS PubMed Google Scholar
Carriere, C., Young, A. L., Gunn, J. R., Longnecker, D. S. & Korc, M. Acute pancreatitis markedly accelerates pancreatic cancer progression in mice expressing oncogenic Kras. Biochem. Biophys. Res. Commun. 382, 561–565 (2009).
Article CAS PubMed PubMed Central Google Scholar
Yamaguchi, J., Yokoyama, Y., Kokuryo, T., Ebata, T. & Nagino, M. Cells of origin of pancreatic neoplasms. Surg. Today 48, 9–17 (2018).
Perera, R. M. & Bardeesy, N. Pancreatic cancer metabolism: breaking it down to build it back up. Cancer Discov. 5, 1247–1261 (2015).
Article CAS PubMed PubMed Central Google Scholar
Del Poggetto, E. et al. Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis. Science 373, eabj0486 (2021).
Article PubMed PubMed Central Google Scholar
Li, Y. et al. Mutant Kras co-opts a proto-oncogenic enhancer network in inflammation-induced metaplastic progenitor cells to initiate pancreatic cancer. Nat Cancer 2, 49–65 (2021).
Article CAS PubMed Google Scholar
Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011).
Article CAS PubMed PubMed Central Google Scholar
Kim, K. H. & Roberts, C. W. Targeting EZH2 in cancer. Nat. Med. 22, 128–134 (2016).
Article CAS PubMed PubMed Central Google Scholar
Escobar, T. M. et al. Active and repressed chromatin domains exhibit distinct nucleosome segregation during DNA replication. Cell 179, 953–963 (2019).
Article CAS PubMed PubMed Central Google Scholar
Bracken, A. P. et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22, 5323–5335 (2003).
Article CAS PubMed PubMed Central Google Scholar
Mallen-St Clair, J. et al. EZH2 couples pancreatic regeneration to neoplastic progression. Genes Dev. 26, 439–444 (2012).
Article PubMed PubMed Central Google Scholar
Chen, N. M. et al. Context-dependent epigenetic regulation of nuclear factor of activated T cells 1 in pancreatic plasticity. Gastroenterology 152, 1507–1520 (2017).
Article CAS PubMed Google Scholar
Patil, S. et al. EZH2 regulates pancreatic cancer subtype identity and tumor progression via transcriptional repression of GATA6. Cancer Res. 80, 4620–4632 (2020).
Article CAS PubMed Google Scholar
Ma, Q. Role of NRF2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 53, 401–426 (2013).
Article CAS PubMed PubMed Central Google Scholar
Chio, I. I. C. et al. NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer. Cell 166, 963–976 (2016).
Article CAS PubMed PubMed Central Google Scholar
DeNicola, G. M. et al. Oncogene-induced NRF2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106–109 (2011).
Article CAS PubMed PubMed Central Google Scholar
Sullivan, L. B. & Chandel, N. S. Mitochondrial reactive oxygen species and cancer. Cancer Metab 2, 17 (2014).
Article PubMed PubMed Central Google Scholar
Todoric, J. et al. Stress-activated NRF2–MDM2 cascade controls neoplastic progression in pancreas. Cancer Cell 32, 824–839 (2017).
Article CAS PubMed PubMed Central Google Scholar
Singh, A. et al. Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors. ACS Chem. Biol. 11, 3214–3225 (2016).
Article CAS PubMed PubMed Central Google Scholar
Torrente, L. & DeNicola, G. M. Targeting NRF2 and its downstream processes: opportunities and challenges. Annu. Rev. Pharmacol. Toxicol. 62, 279–300 (2022).
Comments (0)