Liu, S. et al. Global burden of musculoskeletal disorders and attributable factors in 204 countries and territories: a secondary analysis of the global burden of disease 2019 study. BMJ Open 12, e062183 (2022).
PubMed PubMed Central Google Scholar
Nguyen, A. T. et al. Musculoskeletal health: an ecological study assessing disease burden and research funding. Lancet Reg. Health Am. 29, 100661 (2024).
PubMed PubMed Central Google Scholar
Zhang, Y. & Zhou, Y. Advances in targeted therapies for age-related osteoarthritis: a comprehensive review of current research. Biomed. Pharmacother. 179, 117314 (2024).
Archer, C. W. & Francis-West, P. The chondrocyte. Int. J. Biochem. Cell Biol. 35, 401–404 (2003).
Goldring, M. B. Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best. Pract. Res. Clin. Rheumatol. 20, 1003–1025 (2006).
Muir, H. The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. Bioessays 17, 1039–1048 (1995).
Pretemer, Y. et al. Differentiation of hypertrophic chondrocytes from human iPSCs for the in vitro modeling of chondrodysplasias. Stem Cell Rep. 16, 610–625 (2021).
Riegger, J. & Brenner, R. E. Pathomechanisms of posttraumatic osteoarthritis: chondrocyte behavior and fate in a precarious environment. Int. J. Mol. Sci. 21, 1560 (2020).
CAS PubMed PubMed Central Google Scholar
Cancedda, R., Castagnola, P., Cancedda, F. D., Dozin, B. & Quarto, R. Developmental control of chondrogenesis and osteogenesis. Int. J. Dev. Biol. 44, 707–714 (2000).
Styczynska-Soczka, K., Amin, A. K. & Hall, A. C. Cell-associated type I collagen in nondegenerate and degenerate human articular cartilage. J. Cell Physiol. 236, 7672–7681 (2021).
Murray, D. H., Bush, P. G., Brenkel, I. J. & Hall, A. C. Abnormal human chondrocyte morphology is related to increased levels of cell-associated IL-1β and disruption to pericellular collagen type VI. J. Orthop. Res. 28, 1507–1514 (2010).
CAS PubMed PubMed Central Google Scholar
Hall, A. C. The role of chondrocyte morphology and volume in controlling phenotype — implications for osteoarthritis, cartilage repair, and cartilage engineering. Curr. Rheumatol. Rep. 21, 38 (2019).
PubMed PubMed Central Google Scholar
Wang, T. et al. Single-cell RNA sequencing in orthopedic research. Bone Res. 11, 10 (2023).
CAS PubMed PubMed Central Google Scholar
Huang, C. et al. Single-cell transcriptomic analysis of chondrocytes in cartilage and pathogenesis of osteoarthritis. Genes. Dis. 12, 101241 (2025).
Pandey, A. & Bhutani, N. Profiling joint tissues at single-cell resolution: advances and insights. Nat. Rev. Rheumatol. 20, 7–20 (2024).
Liu, Z. et al. Single-cell profiling uncovers synovial fibroblast subpopulations associated with chondrocyte injury in osteoarthritis. Front. Endocrinol. 15, 1479909 (2024).
Danalache, M. et al. Exploration of changes in spatial chondrocyte organisation in human osteoarthritic cartilage by means of 3D imaging. Sci. Rep. 11, 9783 (2021).
CAS PubMed PubMed Central Google Scholar
Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).
Campbell, D. D. & Pei, M. Surface markers for chondrogenic determination: a highlight of synovium-derived stem cells. Cells 1, 1107–1120 (2012).
PubMed PubMed Central Google Scholar
Studle, C. et al. Challenges toward the identification of predictive markers for human mesenchymal stromal cells chondrogenic potential. Stem Cell Transl. Med. 8, 194–204 (2019).
Sober, S. A., Darmani, H., Alhattab, D. & Awidi, A. Flow cytometric characterization of cell surface markers to differentiate between fibroblasts and mesenchymal stem cells of different origin. Arch. Med. Sci. 19, 1487–1496 (2023).
Sandell, L. J. & Aigner, T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res. 3, 107–113 (2001).
CAS PubMed PubMed Central Google Scholar
Chen, N., Wu, R. W. H., Lam, Y., Chan, W. C. W. & Chan, D. Hypertrophic chondrocytes at the junction of musculoskeletal structures. Bone Rep. 19, 101698 (2023).
CAS PubMed PubMed Central Google Scholar
Schumacher, B. L., Hughes, C. E., Kuettner, K. E., Caterson, B. & Aydelotte, M. B. Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints. J. Orthop. Res. 17, 110–120 (1999).
Sun, Z. et al. Single-cell RNA sequencing reveals different chondrocyte states in femoral cartilage between osteoarthritis and healthy individuals. Front. Immunol. 15, 1407679 (2024).
CAS PubMed PubMed Central Google Scholar
Fickert, S., Fiedler, J. & Brenner, R. E. Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers. Arthritis Res. Ther. 6, R422–432 (2004).
CAS PubMed PubMed Central Google Scholar
Tallheden, T. et al. Phenotypic plasticity of human articular chondrocytes. J. Bone Jt Surg. Am. 85, 93–100 (2003).
Jiang, Y. & Tuan, R. S. Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat. Rev. Rheumatol. 11, 206–212 (2015).
Herren, A. O. F., Amin, A. K. & Hall, A. C. A disintegrin and metalloproteinase with thrombospondin motifs-4 levels in chondrocytes of different morphology within nondegenerate and early osteoarthritic human femoral head cartilage. Cartilage 15, 278–282 (2024).
Lauer, J. C., Selig, M., Hart, M. L., Kurz, B. & Rolauffs, B. Articular chondrocyte phenotype regulation through the cytoskeleton and the signaling processes that originate from or converge on the cytoskeleton: towards a novel understanding of the intersection between actin dynamics and chondrogenic function. Int. J. Mol. Sci. 22, 3279 (2021).
CAS PubMed PubMed Central Google Scholar
Gao, H. et al. Identification of chondrocyte subpopulations in osteoarthritis using single-cell sequencing analysis. Gene 852, 147063 (2023).
Chou, C. H. et al. Synovial cell cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis. Sci. Rep. 10, 10868 (2020).
CAS PubMed PubMed Central Google Scholar
Ji, Q. et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. Ann. Rheum. Dis. 78, 100–110 (2019).
Di, J. et al. Cartilage tissue from sites of weight bearing in patients with osteoarthritis exhibits a differential phenotype with distinct chondrocytes subsets. RMD Open 9, e003255 (2023).
PubMed PubMed Central Google Scholar
Yan, M. et al. Single-cell RNA sequencing reveals distinct chondrocyte states in femoral cartilage under weight-bearing load in rheumatoid arthritis. Front. Immunol. 14, 1247355 (2023).
CAS PubMed PubMed Central Google Scholar
Wang, X. et al. Comparison of the major cell populations among osteoarthritis, Kashin-Beck disease and healthy chondrocytes by single-cell RNA-seq analysis. Cell Death Dis. 12, 551 (2021).
CAS PubMed PubMed Central Google Scholar
Fan, Y. et al. Unveiling inflammatory and prehypertrophic cell populations as key contributors to knee cartilage degeneration in osteoarthritis using multi-omics data integration. Ann. Rheum. Dis. 83, 926–944 (2024).
Wang, J. et al. Single-cell RNA sequencing reveals the impact of mechanical loading on knee tibial cartilage in osteoarthritis. Int. Immunopharmacol. 128, 111496 (2024).
Comments (0)