Targeting bone in cancer therapy: Advances and challenges of bisphosphonate-based drug delivery systems

[1] M. Chauhan, S. Sun, J. Tao, P.P. Sadeghizadeh, P. Cherian, A.F. Junka, E. Sodagar, L. Xing, R.K. Boeckman Jr, V. Srinivasan, Z. Yao, B.F. Boyce. Bisphosphonates for delivering drugs to bone. British Journal of Pharmacology 178 (2021) 2008-2025 https://doi.org/10.1111/bph.15251

[2] M.J. Rogers, J. Mönkkönen, M.A. Munoz. Molecular mechanisms of action of bisphosphonates and new insights into their effects outside the skeleton. Bone 139 (2020) 115493 https://doi.org/10.1016/j.bone.2020.115493

[3] B. Clarke. Normal bone anatomy and physiology. Clinical Journal of the American Society of Nephrology: CJASN 3 (2008) 131-139 https://doi.org/10.2215/CJN.04151206

[4] G.H. Nancollas, R. Tang, R.J. Phipps, Z. Henneman, S. Gulde, W. Wu, A. Mangood, R.G.G. Russell, F.H. Ebetino. Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone 38 (2006) 617-627 https://doi.org/10.1016/j.bone.2005.05.003

[5] E. Chiarella, C. Nisticò, A. Di Vito, H.L. Morrone, M. Mesuraca. Targeting of Mevalonate-Isoprenoid Pathway in Acute Myeloid Leukemia Cells by Bisphosphonate Drugs. Biomedicines 10 (2022) 1146 https://doi.org/10.3390/biomedicines10051146

[6] Z. Mbese, B.A. Aderibigbe. Bisphosphonate-Based conjugates and derivatives as potential therapeutic agents in osteoporosis, bone cancer and metastatic bone cancer. International Journal of Molecular Sciences 22 (2021) 6869 https://doi.org/10.3390/ijms22136869

[7] A. Kuźnik, A. Październiok-Holewa, P. Jewula, N. Kuźnik. Bisphosphonates—much more than only drugs for bone diseases. European Journal of Pharmacology 866 (2020) 172773 https://doi.org/10.1016/j.ejphar.2019.172773

[8] J.C. Branco Santos, J.A. De Melo, S. Maheshwari, W.M.T.Q. De Medeiros, J.W. de Freitas Oliveira, C.J. Moreno, L. Mario Amzel, S.B. Gabelli, M. Sousa Silva. Bisphosphonate-based molecules as potential new antiparasitic drugs. Molecules 25 (2020) 2602 https://doi.org/10.3390/molecules25112602

[9] J.R. Center, K.W. Lyles, D. Bliuc. Bisphosphonates and lifespan. Bone 141 (2020) 115566 https://doi.org/10.1016/j.bone.2020.115566

[10] Y. Wu, B. Sun, Y. Tang, A. Shen, Y. Lin, X. Zhao, J. Li, M.J. Monteiro, W. Gu. Bone targeted nano-drug and nano-delivery. Bone Research 12 (2024) 51 https://doi.org/10.1038/s41413-024-00356-2

[11] D.V. Novack, S.L. Teitelbaum. The osteoclast: friend or foe? Annual Review of Pathology: Mechanisms of Disease 3 (2008) 457-484 https://doi.org/10.1146/annurev.pathmechdis.3.121806.151431

[12] D. Kimmel. Mechanism of action, pharmacokinetic and pharmacodynamic profile, and clinical applications of nitrogen-containing bisphosphonates. Journal of Dental Research 86 (2007) 1022-1033 https://doi.org/10.1177/154405910708601102

[13] M. van Driel, J.P. van Leeuwen. Cancer and bone: A complex complex. Archives of Biochemistry and Biophysics 561 (2014) 159-166 https://doi.org/10.1016/j.abb.2014.07.013

[14] H.H. Van Acker, S. Anguille, Y. Willemen, E.L. Smits, V.F. Van Tendeloo. Bisphosphonates for cancer treatment: mechanisms of action and lessons from clinical trials. Pharmacology & Therapeutics 158 (2016) 24-40 https://doi.org/10.1016/j.pharmthera.2015.11.008

[15] Y. Fang, A. Yu, L. Ye, G. Zhai. Research progress in tumor targeted immunotherapy. Expert Opinion on Drug Delivery 18 (2021) 1067-1090 https://doi.org/10.1080/17425247.2021.1882992

[16] R.A. Nadar, K. Farbod, K.C.V der Schilden, L. Schlatt, B. Crone, N. Asokan, A. Curci, M. Brand, Bornhaeuser, M. Iafisco, M. Margiotta, U. Karst, S. Heskamp, O.C. Boerman, J.J.J.P van der Beucken, S.C.G. Leeuwenburgh. Targeting of radioactive platinum-bisphosphonate anticancer drugs to bone of high metabolic activity. Scientific Reports 10 (2020) 5889 https://doi.org/10.1038/s41598-020-62039-2

[17] R.A. Nadar, G.M. Franssen, N.W.M Van Dijk, K. Codee-van Der Schilden, M. de Weijert, E. Oosterwijk, M. Iafisco, N. Margiotta, S. Heskamp, J.J.J.P. van den Beucken, S.C.G. Leeuwenburgh. Bone tumor-targeted delivery of theranostic 195mPt-bisphosphonate complexes promotes killing of metastatic tumor cells. Materials Today Bio 9 (2021) 100088 https://doi.org/10.1016/j.mtbio.2020.100088

[18] A.A. Fathy, I.S. Butler, M. Abd Elrahman, B.J. Jean-Claude, S.I. Mostafa. Anticancer evaluation and drug delivery of new palladium (II) complexes based on the chelate of alendronate onto hydroxyapatite nanoparticles. Inorganica Chimica Acta 473 (2018) 44-50 https://doi.org/10.1016/j.ica.2017.12.015

[19] S. Shakori Poshteh, S. Alipour, P. Varamini. Harnessing curcumin and nanotechnology for enhanced treatment of breast cancer bone metastasis. Discover Nano 19 (2024) 177 https://doi.org/10.1186/s11671-024-04126-1

[20] C. Schem, R.J. Tower, P. Kneissl, A.C. Rambow, G.M. Campbell, C. Desel, T. Damm, T. Heilmann, S. Fuchs, M. Zuhayra, A. Trauzold. Pharmacologically inactive bisphosphonates as an alternative strategy for targeting osteoclasts: in vivo assessment of 5‐fluorodeoxyuridine‐alendronate in a preclinical model of breast cancer bone metastases. Journal of Bone and Mineral Research 32 (2017) 536-548 https://doi.org/10.1002/jbmr.3012

[21] W.L. Ye, Y.P. Zhao, R. Na, F. Li, Q.B. Mei, M.G. Zhao, S.Y. Zhou. Actively targeted delivery of doxorubicin to bone metastases by a pH-sensitive conjugation. Journal of Pharmaceutical Sciences 104 (2015) 2293-2303 https://doi.org/10.1002/jps.24476

[22] A. Alvarez-Valdes, A.I. Matesanz, J. Perles, C. Fernandes, J.D. Correia, F. Mendes, A.G. Quiroga. Novel structures of platinum complexes bearing N‑bisphosphonates and study of their biological properties. Journal of Inorganic Biochemistry 191 (2019) 112-118 https://doi.org/10.1016/j.jinorgbio.2018.11.010

[23] E. David, S. Cagnol, J.Y. Goujon, M. Egorov, J. Taurelle, C. Benesteau, L. Morandeau, C. Moal, M. Sicard, S. Pairel, D. Heymann. 12b80–hydroxybisphosphonate linked doxorubicin: bone targeted strategy for treatment of osteosarcoma. Bioconjugate Chemistry 30 (2019) 1665-1676 https://doi.org/10.1021/acs.bioconjchem.9b00210

[24] J. Tao, V. Srinivasan, X. Yi, Y. Zhao, H. Zhang, X. Lin, X., Zhou, B.F. Boyce, P.W. Villalta, F.H. Ebetino, K.K. Ho. Bone‐Targeted Bortezomib Inhibits Bortezomib‐Resistant Multiple Myeloma in Mice by Providing Higher Levels of Bortezomib in Bone. Journal of Bone and Mineral Research 37 (2022) 629-642 https://doi.org/10.1002/jbmr.4496

[25] S.J. Jang, S.E. Kim, T.S. Han, J.S. Son, S.S., Kang, S.H. Choi. Bone regeneration of hydroxyapatite with granular form or porous scaffold in canine alveolar sockets. in vivo 31 (2017) 335-341 https://doi.org/10.21873/invivo.11064

[26] J. Jeong, J.H. Kim, J.H., Shim, N.S. Hwang, C.Y. Heo. Bioactive calcium phosphate materials and applications in bone regeneration. Biomaterials Research 23 (2019) 1-11 https://doi.org/10.1186/s40824-018-0149-3

[27] N. Pajares-Chamorro, X. Chatzistavrou. Bioactive glass nanoparticles for tissue regeneration. Acs Omega 5 (2020) 12716-12726 https://doi.org/10.1021/acsomega.0c00180

[28] D. Li, Y. Zhu, Z. Liang. Alendronate functionalized mesoporous hydroxyapatite nanoparticles for drug delivery. Materials Research Bulletin 48 (2013) 2201-2204 https://doi.org/10.1016/j.materresbull.2013.02.049

[29] W. Chu, Y. Huang, C. Yang, Y. Liao, X. Zhang, M. Yan, S. Cui, C. Zhao. Calcium phosphate nanoparticles functionalized with alendronate-conjugated polyethylene glycol (PEG) for the treatment of bone metastasis. International Journal of Pharmaceutics 516 (2017) 352-363 https://doi.org/10.1016/j.ijpharm.2016.11.051

[30] S. Mehnath, K. Karthikeyan, M. Rajan, M. Jeyaraj. Fabrication of bone-targeting hyaluronic acid coupled alendronate-bioactive glass for osteosarcoma therapy. Materials Chemistry and Physics 273 (2021) 125146 https://doi.org/10.1016/j.matchemphys.2021.125146

[31] Y. Lin, M.G. Villacanas, H., Zou, H. Liu, I.G. Carcedo, Y. Wu, B. Sun, X. Wu, I. Prasadam, M.J. Monteiro, L. Li. Calcium-bisphosphonate nanoparticle platform as a prolonged nanodrug and bone-targeted delivery system for bone diseases and cancers. ACS Applied Bio Materials 4 (2021) 2490-2501 https://doi.org/10.1021/acsabm.0c01455

[32] V.M. Wu, J. Mickens, V. Uskokovic. Bisphosphonate-functionalized hydroxyapatite nanoparticles for the delivery of the bromodomain inhibitor JQ1 in the treatment of osteosarcoma. ACS Applied Materials & Interfaces 9 (2017) 25887-25904 https://doi.org/10.1021/acsami.7b08108

[33] T.T. Pham, H.T. Nguyen, C. Dai Phung, S. Pathak, S. Regmi, D.H. Ha, J.O. Kim, C.S. Yong, S.K. Kim, J.E. Choi, S. Yook. Targeted delivery of doxorubicin for the treatment of bone metastasis from breast cancer using alendronate-functionalized graphene oxide nanosheets. Journal of Industrial and Engineering Chemistry 76 (2019) 310-317 https://doi.org/10.1016/j.jiec.2019.03.055

[34] M. Sato, W. Grasser, N. Endo, R. Akins, H. Simmons, D.D. Thompson, E. Golub, G.A. Rodan. Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. The Journal of Clinical Investigation 88 (1991) 2095-2105 https://doi.org/10.1172/jci115539

[35] K.R. Chaudhari, A. Kumar, V.K.M. Khandelwal, M. Ukawala, A.S. Manjappa, A.K. Mishra, J. Monkkonen, R.S.R. Murthy. Bone metastasis targeting: a novel approach to reach bone using Zoledronate anchored PLGA nanoparticle as carrier system loaded with Docetaxel. Journal of Controlled Release 158 (2012) 470-478 https://doi.org/10.1016/j.jconrel.2011.11.020

[36] E. Lee, J. Park, Y.S. Youn, K.T. Oh, D. Kim, E.S. Lee. Alendronate/cRGD-decorated ultrafine hyaluronate dot targeting bone metastasis. Biomedicines 8 (2020) 492 https://doi.org/10.3390/biomedicines8110492

[37] W.F. Bleam. Chapter 6 - Natural Organic Matter and Humic Colloids, in Soil and Environmental Chemistry, Academic Press: Boston, 2012, 209-256. http://dx.doi.org/10.1016/B978-0-12-415797-2.00006-6

[38] M. Ghezzi, S. Pescina, C. Padula, P. Santi, E. Del Favero, L. Cantù, S. Nicoli. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. Journal of Controlled Release 332 (2021) 312-336 https://doi.org/10.1016/j.jconrel.2021.02.031

[39] A. Akbarzadeh, R. Rezaei-Sadabady, S. Davaran, S.W. Joo, N. Zarghami, Y. Hanifehpour, M. Samiei, M. Kouhi, K. Nejati-Koshki. Liposome: classification, preparation and applications. Nanoscale Research Letters 8 (2013) 1-9 https://doi.org/10.1186/1556-276X-8-102

[40] J. Shi, P.W. Kantoff, R. Wooster, O.C. Farokhzad. Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer 17 (2017) 20-37 https://doi.org/10.1038/nrc.2016.108

[41] W.L. Ye, Y.P. Zhao, H.Q. Li, R. Na, F. Li, Q.B. Mei, M.G. Zhao, S.Y. Zhou. Doxorubicin-poly (ethylene glycol)-alendronate self-assembled micelles for targeted therapy of bone metastatic cancer. Scientific Reports 5 (2015) 14614 https://doi.org/10.1038/srep14614

[42] J. Zhu, Q. Huo, M. Xu, F. Yang, Y. Li, H. Shi, Y. Niu, Y. Liu. Bortezomib-catechol conjugated prodrug micelles: combining bone targeting and aryl boronate-based pH-responsive drug release for cancer bone-metastasis therapy. Nanoscale 10 (2018) 18387-18397 https://doi.org/10.1039/C8NR03899F

[43] Y. He, Y. Huang, Z. Huang, Y. Jiang, X. Sun, Y. Shen, W. Chu, C. Zhao. Bisphosphonate-functionalized coordination polymer nanoparticles for the treatment of bone metastatic breast cancer. Journal of Controlled Release 264 (2017) 76-88 https://doi.org/10.1016/j.jconrel.2017.08.024

[44] S. Feng, Z.X. Wu, Z. Zhao, J. Liu, K. Sun, C. Guo, H. Wang, Z. Wu. Engineering of bone-and CD44-dual-targeting redox-sensitive liposomes for the treatment of orthotopic osteosarcoma. ACS Applied Materials & Interfaces 11 (2019) 7357-7368 https://doi.org/10.1021/acsami.8b18820

[45] Y. Xi, T. Jiang, Y. Yu, J. Yu, M. Xue, N. Xu, J. Wen, W. Wang, H. He, Y. Shen, D. Chen. Dual targeting curcumin loaded alendronate-hyaluronan-octadecanoic acid micelles for improving osteosarcoma therapy. International Journal of Nanomedicine 14 (2019) 6425-6437 http://doi.org/10.2147/IJN.S211981

[46] H. Wu, Y. Luo, D. Xu, X. Ke, T. Ci. Low molecular weight heparin modified bone targeting liposomes for orthotopic osteosarcoma and breast cancer bone metastatic tumors. International Journal of Biological Macromolecules 164 (2020) 2583-2597 https://doi.org/10.1016/j.ijbiomac.2020.08.068

[47] Y. Huang, Z. Xiao, Z. Guan, Y. Shen, Y. Jiang, X. Xu, Z. Huang, C. Zhao. A light-triggered self-reinforced nanoagent for targeted chemo-photodynamic therapy of breast cancer bone metastases via ER stress and mitochondria mediated apoptotic pathways. Journal of Controlled Release 319 (2020) 119-134 https://doi.org/10.1016/j.jconrel.2019.12.043

[48] Y. Huang, Z. Xiao, Z. Guan, Z. Zeng, Y. Shen, X. Xu, C. Zhao. Bone-seeking nanoplatform co-delivering cisplatin and zoledronate for synergistic therapy of breast cancer bone metastasis and bone resorption. Acta Pharmaceutica Sinica B 10 (2020) 2384-2403 https://doi.org/10.1016/j.apsb.2020.06.006

[49] G. Bonzi, S. Salmaso, A. Scomparin, A. Eldar-Boock, R. Satchi-Fainaro, P. Caliceti. Novel pullulan bioconjugate for selective breast cancer bone metastases treatment. Bioconjugate chemistry 26 (2015) 489-501 https://doi.org/10.1021/bc500614b

[50] M.S. Alaei, F. Ganji, H. Shaki. In Vitro Preparation and Evaluation of Alendronate-modified Hyaluronic acid-based Nanomicelles as a Bone-Targeted Drug Delivery System. Journal of Drug Delivery Science and Technology 101 (2024) 106256. https://doi.org/10.1016/j.jddst.2024.106256

[51] T.D.T. Nguyen, A. Pitchaimani, S. Aryal. Engineered nanomedicine with alendronic acid corona improves targeting to osteosarcoma. Scientific Reports 6 (2016) 36707 https://doi.org/10.1038/srep36707

[52] S. Kozlu, S. Sahin, G. Ultav, F. Yerlikaya, S. Calis, Y. Capan. Development and in vitro evaluation of doxorubicin and celecoxib co-loaded bone targeted nanoparticles. Journal of Drug Delivery Science and Technology 45 (2018) 213-219 https://doi.org/10.1016/j.jddst.2018.02.004

[53] Y. Yuan, J.X. Song, M.N. Zhang, B.S. Yuan. A multiple drug loaded, functionalized pH-sensitive nanocarrier as therapeutic and epigenetic modulator for osteosarcoma. Scientific Reports 10 (2020) 15497 https://doi.org/10.1038/s41598-020-72552-z

[54] S.B. Bai, D.Z. Liu, Y. Cheng, H. Cui, M. Liu, M.X. Cui, Q.B. Mei, S.Y. Zhou. Osteoclasts and tumor cells dual targeting nanoparticle to treat bone metastases of lung cancer. Nanomedicine: Nanotechnology, Biology and Medicine 21 (2019) 102054 https://doi.org/10.1016/j.nano.2019.102054

[55] N.W. Kang, J.Y. Lee, D.D. Kim. Hydroxyapatite-binding albumin nanoclusters for enhancing bone tumor chemotherapy. Journal of Controlled Release 342 (2022) 111-121 https://doi.org/10.1016/j.jconrel.2021.12.039

[56] K. Miller, C. Clementi, D. Polyak, A. Eldar-Boock, L. Benayoun, I. Barshack, Y. Shaked, G. Pasut, R. Satchi-Fainaro. Poly(ethylene glycol)-paclitaxel-alendronate self-assembled micelles for the targeted treatment of breast cancer bone metastases. Biomaterials 34 (2013) 3795-806 https://doi.org/10.1016/j.biomaterials.2013.01.052

[57] D. dos Santos Ferreira, B.L.J. de Oliveira Pinto, V. Kumar, V.N. Cardoso, S.O. Fernandes, C.M. Souza, G.D. Cassali, A. Moore, D.E. Sosnovik, C.T. Farrar E.A. Leite. Evaluation of antitumor activity and cardiac toxicity of a bone-targeted ph-sensitive liposomal formulation in a bone metastasis tumor model in mice. Nanomedicine: Nanotechnology, Biology and Medicine 13 (2017) 1693-1701 https://doi.org/10.1016/j.nano.2017.03.005

[58] A.R.K. Sasikala, V.K. Kaliannagounder, N.R. Alluri, B.K. Shrestha, S.J. Kim, H. Ali-Boucetta, C.H. Park, A.R. Unnithan. Development of self-powered multifunctional piezomagnetic nanoparticles for non-invasive post-surgical osteosarcoma theranogeneration. Nano Energy 96 (2022) 107134 https://doi.org/10.1016/j.nanoen.2022.107134

[59] Y. Pan J. Wang, Z. Jiang, Q. Guo, Z. Zhang, J. Li, Y. Hu, L. Wang. Zoledronate combined metal-organic frameworks for bone-targeting and drugs deliveries. Scientific Reports 12 (2022) 12290 https://doi.org/10.1038/s41598-022-15941-w

[60] I.C. Yoon, L. Xue, Q. Chen, J. Liu, J. Xu, Z. Siddiqui, D. Kim, B. Chen, Q. Shi, E. Laura Han, M. Cherry Ruiz. Piperazine‐Derived Bisphosphonate‐Based Ionizable Lipid Nanoparticles Enhance mRNA Delivery to the Bone. Biomaterials 64 (2025) https://doi.org/10.1002/anie.202415389

[61] J.A. Damasco, G. Yu, A. Kumar, J. Perez, R.C.M. Lirag, E.M. Whitley, S.H. Lin, M.P. Melancon. Alendronate conjugate for targeted delivery to bone-forming prostate cancer. Talanta 256 (2023) 124308 https://doi.org/10.1016/j.talanta.2023.124308

[62] A. Barbanente, A.M. Di Cosola, M. Niso, L. D'Anna, S. Rubino, S. Indelicato, C. Pacifico, A. Terenzi, N. Margiotta. New oxaliplatin-zoledronate derivatives with potential antitumor activity towards bone tumors and metastases. Journal of Inorganic Biochemistry 270 (2025) 112916 https://doi.org/10.1016/j.jinorgbio.2025.112916

Comments (0)

No login
gif