Metabolic insights into the warfarin-mango interaction: A pilot study integrating clinical observations and metabolomics

[1] J. Lähteenmäki, A.L. Vuorinen, M. Lehto, M. Niemi, M.M. Forsberg. Pharmacogenetics of warfarin and healthcare costs - Real-world data analysis. Pharmacoepidemiology and drug safety 32 (2023) 382-386. https://doi.org/10.1002/pds.5585

[2] B. Sombat, S. Tongkaew, A. Nilwaranon, M. Mungthin, K. Jongcherdchootrakul, T. Lertwanichwattana. Incidence and risk factors of warfarin therapy complications in community hospitals, central and eastern regions, Thailand: a retrospective, multicenter, cohort study. BMC research notes 16 (2023) 104. https://doi.org/10.1186/s13104-023-06383-2

[3] S.S. Ng, S. Nathisuwan, A. Phrommintikul, N. Chaiyakunapruk. Cost-effectiveness of warfarin care bundles and novel oral anticoagulants for stroke prevention in patients with atrial fibrillation in Thailand. Thrombosis research 185 (2020) 63-71. https://doi.org/10.1016/j.thromres.2019.11.012

[4] I. Piatkov, C. Rochester, T. Jones, S. Boyages. Warfarin toxicity and individual variability-clinical case. Toxins (Basel) 2 (2010) 2584-2592. https://doi.org/10.3390/toxins2112584

[5] J. Monterrey-Rodríguez. Interaction between warfarin and mango fruit. The Annals of pharmacotherapy 36 (2002) 940-941. https://doi.org/10.1177/106002800203600504

[6] D.A. Norwood, C.K. Parke, L.R. Rappa. A Comprehensive Review of Potential Warfarin-Fruit Interactions. Journal of Pharmacy Practice 28 (2015) 561-571. https://doi.org/10.1177/0897190014544823

[7] C.S.S. Tan, S.W.H. Lee. Warfarin and food, herbal or dietary supplement interactions: A systematic review. British journal of clinical pharmacology 87 (2021) 352-374. https://doi.org/10.1111/bcp.14404

[8] P.M. Leite, M.A.P. Martins, M.d.G. Carvalho, R.O. Castilho. Mechanisms and interactions in concomitant use of herbs and warfarin therapy: An updated review. Biomedicine & Pharmacotherapy 143 (2021) 112103. https://doi.org/https://doi.org/10.1016/j.biopha.2021.112103

[9] J. Hirsh, V. Fuster, J. Ansell, J.L. Halperin. American Heart Association/American College of Cardiology Foundation Guide to Warfarin Therapy. Circulation 107 (2003) 1692-1711. https://doi.org/doi:10.1161/01.CIR.0000063575.17904.4E

[10] S.Y. Kim, J.Y. Kang, J.H. Hartman, S.H. Park, D.R. Jones, C.H. Yun, G. Boysen, G.P. Miller. Metabolism of R- and S-warfarin by CYP2C19 into four hydroxywarfarins. Drug metabolism letters 6 (2012) 157-164. https://doi.org/10.2174/1872312811206030002

[11] A.A. Izzo, G. Di Carlo, F. Borrelli, E. Ernst. Cardiovascular pharmacotherapy and herbal medicines: the risk of drug interaction. International Journal of Cardiology 98 (2005) 1-14. https://doi.org/https://doi.org/10.1016/j.ijcard.2003.06.039

[12] H. Kim, M.J. Castellon-Chicas, S. Arbizu, S.T. Talcott, N.L. Drury, S. Smith, S.U. Mertens-Talcott. Mango (Mangifera indica L.) Polyphenols: Anti-Inflammatory Intestinal Microbial Health Benefits, and Associated Mechanisms of Actions. Molecules (Basel, Switzerland) 26 (2021). https://doi.org/10.3390/molecules26092732

[13] H. Yamazaki, T. Shimada. Effects of arachidonic acid, prostaglandins, retinol, retinoic acid and cholecalciferol on xenobiotic oxidations catalysed by human cytochrome P450 enzymes. Xenobiotica 29 (1999) 231-241. https://doi.org/10.1080/004982599238632

[14] A. Duda-Chodak, T. Tarko. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules (Basel, Switzerland) 28 (2023). https://doi.org/10.3390/molecules28062536

[15] E. Fliszár-Nyúl, V. Mohos, R. Csepregi, P. Mladěnka, M. Poór. Inhibitory effects of polyphenols and their colonic metabolites on CYP2D6 enzyme using two different substrates. Biomedicine & Pharmacotherapy 131 (2020) 110732. https://doi.org/10.1016/j.biopha.2020.110732

[16] P. Tajai, G. Konguthaithip, T. Chaikhaeng, C. Jaikang. Glyphosate-based herbicide metabolic profiles in human urine samples through proton nuclear magnetic resonance analysis. ADMET & DMPK 12 (2024) 957-970. https://doi.org/10.5599/admet.2476

[17] A.C. Dona, M. Kyriakides, F. Scott, E.A. Shephard, D. Varshavi, K. Veselkov, J.R. Everett. A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments. Computational and Structural Biotechnology Journal 14 (2016) 135-153. https://doi.org/https://doi.org/10.1016/j.csbj.2016.02.005

[18] D.S. Wishart, T. Jewison, A.C. Guo, M. Wilson, C. Knox, Y. Liu, Y. Djoumbou, R. Mandal, F. Aziat, E. Dong, S. Bouatra, I. Sinelnikov, D. Arndt, J. Xia, P. Liu, F. Yallou, T. Bjorndahl, R. Perez-Pineiro, R. Eisner, F. Allen, V. Neveu, R. Greiner, A. Scalbert. HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Research 41 (2012) D801-D807. https://doi.org/10.1093/nar/gks1065

[19] T. Claridge. Software Review of MNova: NMR Data Processing, Analysis, and Prediction Software. Journal of Chemical Information and Modeling 49 (2009) 1136-1137. https://doi.org/10.1021/ci900090d

[20] Z. Pang, Y. Lu, G. Zhou, F. Hui, L. Xu, C. Viau, Aliya F. Spigelman, Patrick E. MacDonald, David S. Wishart, S. Li, J. Xia. MetaboAnalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Research 52 (2024) W398-W406. https://doi.org/10.1093/nar/gkae253

[21] Y. Zhou, B. Zhou, L. Pache, M. Chang, A.H. Khodabakhshi, O. Tanaseichuk, C. Benner, S.K. Chanda. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature communications 10 (2019) 1523. https://doi.org/10.1038/s41467-019-09234-6

[22] P. Tajai, B.I. Fedeles, T. Suriyo, P. Navasumrit, J. Kanitwithayanun, J.M. Essigmann, J. Satayavivad. An engineered cell line lacking OGG1 and MUTYH glycosylases implicates the accumulation of genomic 8-oxoguanine as the basis for paraquat mutagenicity. Free radical biology & medicine 116 (2018) 64-72. https://doi.org/10.1016/j.freeradbiomed.2017.12.035

[23] M. Ghatge, G.D. Flora, M.K. Nayak, A.K. Chauhan. Platelet Metabolic Profiling Reveals Glycolytic and 1-Carbon Metabolites Are Essential for GP VI–Stimulated Human Platelets—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology 44 (2024) 409-416. https://doi.org/doi:10.1161/ATVBAHA.123.319821

[24] P.P. Kulkarni, M. Ekhlak, D. Dash. Energy metabolism in platelets fuels thrombus formation: Halting the thrombosis engine with small-molecule modulators of platelet metabolism. Metabolism 145 (2023) 155596. https://doi.org/10.1016/j.metabol.2023.155596

[25] G.D. Flora, M.K. Nayak, M. Ghatge, A.K. Chauhan. Metabolic targeting of platelets to combat thrombosis: dawn of a new paradigm? Cardiovascular Research 119 (2023) 2497-2507. https://doi.org/10.1093/cvr/cvad149

[26] C.L. Sake, A.J. Metcalf, M. Meagher, J. Di Paola, K.B. Neeves, N.R. Boyle. Isotopically nonstationary (13)C metabolic flux analysis in resting and activated human platelets. Metabolic engineering 69 (2022) 313-322. https://doi.org/10.1016/j.ymben.2021.12.007

[27] P.P. Kulkarni, A. Tiwari, N. Singh, D. Gautam, V.K. Sonkar, V. Agarwal, D. Dash. Aerobic glycolysis fuels platelet activation: small-molecule modulators of platelet metabolism as anti-thrombotic agents. Haematologica 104 (2019) 806-818. https://doi.org/10.3324/haematol.2018.205724

[28] P.P. Kulkarni, M. Ekhlak, V. Singh, V. Kailashiya, N. Singh, D. Dash. Fatty acid oxidation fuels agonist-induced platelet activation and thrombus formation: Targeting β-oxidation of fatty acids as an effective anti-platelet strategy. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 37 (2023) e22768. https://doi.org/10.1096/fj.202201321RR.

[29] M. Aibibula, K.M. Naseem, R.G. Sturmey. Glucose metabolism and metabolic flexibility in blood platelets. Journal of thrombosis and haemostasis : JTH 16 (2018) 2300-2314. https://doi.org/10.1111/jth.14274

[30] S. Ravi, B. Chacko, H. Sawada, P.A. Kramer, M.S. Johnson, G.A. Benavides, V. O'Donnell, M.B. Marques, V.M. Darley-Usmar. Metabolic plasticity in resting and thrombin activated platelets. PLoS One 10 (2015) e0123597. https://doi.org/10.1371/journal.pone.0123597

[31] P.P. Kulkarni, M. Ekhlak, V.K. Sonkar, D. Dash. Mitochondrial ATP generation in stimulated platelets is essential for granule secretion but dispensable for aggregation and procoagulant activity. Haematologica 107 (2022) 1209-1213. https://doi.org/10.3324/haematol.2021.279847

[32] G.D. Flora, M.K. Nayak, M. Ghatge, M. Kumskova, R.B. Patel, A.K. Chauhan. Mitochondrial pyruvate dehydrogenase kinases contribute to platelet function and thrombosis in mice by regulating aerobic glycolysis. Blood advances 7 (2023) 2347-2359. https://doi.org/10.1182/bloodadvances.2023010100

[33] M.K. Nayak, M. Ghatge, G.D. Flora, N. Dhanesha, M. Jain, K.R. Markan, M.J. Potthoff, S.R. Lentz, A.K. Chauhan. The metabolic enzyme pyruvate kinase M2 regulates platelet function and arterial thrombosis. Blood 137 (2021) 1658-1668. https://doi.org/10.1182/blood.2020007140

[34] E. Possik, A. Al-Mass, M.L. Peyot, R. Ahmad, F. Al-Mulla, S.R.M. Madiraju, M. Prentki. New Mammalian Glycerol-3-Phosphate Phosphatase: Role in β-Cell, Liver and Adipocyte Metabolism. Frontiers in Endocrinology 12 (2021) 706607. https://doi.org/10.3389/fendo.2021.706607

[35] R.A. Harkness. Metabolism at a Glance, 2nd Edition. J.G. Salway. Journal of Inherited Metabolic Disease 22 (1999) 914-914. https://doi.org/10.1023/A:1005641407072

[36] D.L. Nelson, Lehninger principles of biochemistry, Fourth edition. New York : W.H. Freeman, 2005., 2005. https://search.library.wisc.edu/catalog/999964334502121

[37] A.L. Orr, D. Ashok, M.R. Sarantos, R. Ng, T. Shi, A.A. Gerencser, R.E. Hughes, M.D. Brand. Novel inhibitors of mitochondrial sn-glycerol 3-phosphate dehydrogenase. PLoS One 9 (2014) e89938. https://doi.org/10.1371/journal.pone.0089938

[38] R.H. Houtkooper, H. Akbari, H. van Lenthe, W. Kulik, R.J. Wanders, M. Frentzen, F.M. Vaz. Identification and characterization of human cardiolipin synthase. FEBS Letters 580 (2006) 3059-3064. https://doi.org/10.1016/j.febslet.2006.04.054

[39] H.F. Tian, J.M. Feng, J.F. Wen. The evolution of cardiolipin biosynthesis and maturation pathways and its implications for the evolution of eukaryotes. BMC evolutionary biology 12 (2012) 32. https://doi.org/10.1186/1471-2148-12-32

[40] X. Ou, C. Ji, X. Han, X. Zhao, X. Li, Y. Mao, L.L. Wong, M. Bartlam, Z. Rao. Crystal structures of human glycerol 3-phosphate dehydrogenase 1 (GPD1). Journal of molecular biology 357 (2006) 858-869. https://doi.org/10.1016/j.jmb.2005.12.074

[41] Y.Q. Chen, M.S. Kuo, S. Li, H.H. Bui, D.A. Peake, P.E. Sanders, S.J. Thibodeaux, S. Chu, Y.W. Qian, Y. Zhao, D.S. Bredt, D.E. Moller, R.J. Konrad, A.P. Beigneux, S.G. Young, G. Cao. AGPAT6 is a novel microsomal glycerol-3-phosphate acyltransferase. The Journal of biological chemistry 283 (2008) 10048-10057. https://doi.org/10.1074/jbc.M708151200

[42] A. Prola, F. Pilot-Storck. Cardiolipin Alterations during Obesity: Exploring Therapeutic Opportunities. Biology (Basel) 11 (2022) 1638. https://www.mdpi.com/2079-7737/11/11/1638

[43] K.D. Hauff, S.Y. Choi, M.A. Frohman, G.M. Hatch. Cardiolipin synthesis is required to support human cholesterol biosynthesis from palmitate upon serum removal in Hela cells. Canadian journal of physiology and pharmacology 87 (2009) 813-820. https://doi.org/10.1139/y09-055

[44] R. Lehner, A. Kuksis. Biosynthesis of triacylglycerols. Progress in Lipid Research 35 (1996) 169-201. https://doi.org/10.1016/0163-7827(96)00005-7

[45] P. Oelkers, A. Behari, D. Cromley, J.T. Billheimer, S.L. Sturley. Characterization of two human genes encoding acyl coenzyme A:cholesterol acyltransferase-related enzymes. The Journal of biological chemistry 273 (1998) 26765-26771. https://doi.org/10.1074/jbc.273.41.26765

[46] T. Mashima, H. Seimiya, T. Tsuruo. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. British Journal of Cancer 100 (2009) 1369-1372. https://doi.org/10.1038/sj.bjc.6605007

[47] R.A. Coleman, D.P. Lee. Enzymes of triacylglycerol synthesis and their regulation. Progress in Lipid Research 43 (2004) 134-176. https://doi.org/https://doi.org/10.1016/S0163-7827(03)00051-1

Comments (0)

No login
gif