Correlation between A3243G and G9053A mtDNA mutations and ATP levels in diabetes mellitus patients using qPCR and electrochemical aptasensors

[1] J.L. Fetterman, M. Holbrook, D.G. Westbrook, J.A. Brown, K.P. Feeley, R. Bretón-Romero, E.A. Linder, B.D. Berk, R.M. Weisbrod, M.E. Widlansky, N. Gokce, S.W. Ballinger, N.M. Hamburg. Mitochondrial DNA damage and vascular function in patients with diabetes mellitus and atherosclerotic cardio¬vas¬cular disease. Cardiovascular Diabetology 15 (2016) 53. https://doi.org/10.1186/s12933-016-0372-y

[2] K. Szczepanowska, A. Trifunovic. Different faces of mitochondrial DNA mutators. Biochimica et Biophysica Acta - Bioenergetics 1847 (2015) 1362-1372. https://doi.org/10.1016/j.bbabio.2015.05.016

[3] F.R. Rahmadanthi, I.P. Maksum. Transfer RNA Mutation Associated with Type 2 Diabetes Mellitus. Biology 12 (2023) 871. https://doi.org/10.3390/biology12060871

[4] J. Wang, E.S. Schmitt, M.L. Landsverk, V.W. Zhang, F.Y. Li, B.H. Graham, W.J. Craigen, L.J.C. Wong. An integrated approach for classifying mitochondrial DNA variants: One clinical diagnostic laboratory’s experience. Genetics in Medicine 14 (2012) 620-626. https://doi.org/10.1038/gim.2012.4

[5] Y. Liu, Y. Li, C. Zhu, L. Tian, M. Guan, Y. Chen. Mitochondrial biogenesis dysfunction and metabolic dysfunction from a novel mitochondrial tRNAMet 4467 C>A mutation in a Han Chinese family with maternally inherited hypertension. Scientific Reports 7 (2017)3034. https://doi.org/10.1038/s41598-017-03303-w.

[6] I.J. Holt, A.E. Harding, J.A. Morgan-Hughes. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331 (1988) 717-719. https://doi.org/10.1038/331717a0

[7] R. Li, K. Ishikawa, J.H. Deng, S. Heman-Ackah, Y. Tamagawa, L. Yang, Y. Bai, K. Ichimura, M.X. Guan. Maternally inherited nonsyndromic hearing loss is associated with the T7511C mutation in the mitochondrial tRNASer(UCN) gene in a Japanese family. Biochemical and Biophysical Research Communications 328 (2005) 32-37. https://doi.org/10.1016/j.bbrc.2004.12.140

[8] J. Zheng, G. Sha-sha, T. Xiao-wen, Z. Yi, G. Min-xin. Human Mitochondrial tRNA Mutations in Maternally Inherited Deafness. Journal of Otology 8 (2013) 44-50. https://doi.org/10.1016/S1672-2930(13)50006-7

[9] U. Zekonyte, S.R. Bacman, C.T. Moraes. DNA-editing enzymes as potential treatments for heteroplasmic mtDNA diseases. Journal of Internal Medicine 287 (2020) 685-697. https://doi.org/10.1111/joim.13055

[10] I.P. Maksum, R. Mulyani, K. Hasan, M.I. Azizah, W. Destiarani, A.F. Maulana, M. Yusuf, T. Subroto. Study on the Mitochondrial Genome of Variants Carrying mt.3243A>G from Type-2 Diabetes Mellitus and Cataract Patients in Indonesia. HAYATI Journal of Biosciences 30 (2023) 1017-1024. https://doi.org/10.4308/hjb.30.6.1017-1024.

[11] Y.W. Hartati, S. Nur Topkaya, I.P. Maksum, M. Ozsoz. Sensitive Detection of Mitochondrial DNA A3243G tRNALeu Mutation via an Electrochemical Biosensor Using Meldola’s Blue as a Hybridization Indicator. Advances in Analytical Chemistry 3 (2013) 20-27. https://doi.org/10.5923/s.aac.201307.04

[12] G.J. Tranah, S.M. Katzman, K. Lauterjung, K. Yaffe, T.M. Manini, S. Kritchevsky, A.B. Newman, T.B. Harris, S.R. Cummings. Mitochondrial DNA m.3243A > G heteroplasmy affects multiple aging pheno-types and risk of mortality. Scientific Reports 8 (2018) 11887. https://doi.org/10.1038/s41598-018-30255-6

[13] K. Majamaa, J.S. Moilanen, S. Uimonen, A.M. Remes, P.I. Salmela, M. Kärppä, K.A.M. Majamaa-Voltti, H. Rusanen, M. Sorri, K.J. Peuhkurinen, I.E. Hassinen. Epidemiology of A3243G, the mutation for mito¬chon¬drial encephalomyopathy, lactic acidosis, and strokelike episodes: Prevalence of the mutation in an adult population. American Journal of Human Genetics 63 (1998) 447-454. https://doi.org/10.1086/301959

[14] L.M. Wittenhagen, S.O. Kelley. Dimerization of a pathogenic human mitochondrial tRNA. Nature Structural Biology 9 (2002) 586-590. https://doi.org/10.1038/nsb820

[15] I.P. Maksum, A.F. Maulana, M. Yusuf, R. Mulyani, W. Destiarani, R. Rustaman. Molecular Dynamics Simulation of a tRNA-Leucine Dimer with an A3243G Heteroplasmy Mutation in Human Mitochondria Using a Secondary Structure Prediction Approach. Indonesian Journal of Chemistry 22 (2022) 1043-1051. https://doi.org/10.22146/ijc.72774

[16] S.Y. Park, J.F. Gautier, S. Chon. Assessment of insulin secretion and insulin resistance in human. Diabetes and Metabolism Journal 45 (2021) 641-654. https://doi.org/10.4093/dmj.2021.0220.

[17] V.L. Tokarz, P.E. MacDonald, A. Klip. The cell biology of systemic insulin function. Journal of Cell Biology 217 (2018) 2273-2289. https://doi.org/10.1083/jcb.201802095

[18] I. Permana Maksum, S.R. Saputra, N. Indrayati, M. Yusuf, T. Subroto. Bioinformatics Study of m.9053G>A Mutation at the ATP6 Gene in Relation to Type 2 Diabetes Mellitus and Cataract Diseases. Bioinformatics and Biology Insights 11 (2017) 1-8. https://doi.org/10.1177/1177932217728515

[19] V.W.S. Liu, C. Zhang, A.W. Linnane, P. Nagley. Quantitative allele-specific PCR: Demonstration of age-associated accumulation in human tissues of the A→G mutation at nucleotide 3243 in mitochondrial DNA. Human Mutation 9 (1997) 265-271. https://doi.org/10.1002/(SICI)1098-1004(1997)9:3%3C265::AID-HUMU8%3E3.0.CO;2-6

[20] M.I. Azizah, R. Mulyani, I.P. Maksum. Design and Optimization of PCR-RFLP Assay for Detection of G9053A and T15663C Mutation in Mitochondrial DNA. Research Journal of Chemistry and Environment 27 (2023) 1-5. https://doi.org/10.25303/2702rjce01005

[21] E. Rong, H. Wang, S. Hao, Y. Fu, Y. Ma, T. Wang. Heteroplasmy Detection of Mitochondrial DNA A3243G Mutation Using Quantitative Real-Time PCR Assay Based on TaqMan-MGB Probes. BioMed Research International 2018 (2018) 1286480. https://doi.org/10.1155/2018/1286480

[22] I.P. Maksum, A. Farhani, S.D. Rachman, Y. Ngili. Making of the A3243g mutant template through site directed mutagenesis as positive control in PASA-Mismatch three bases. International Journal of PharmTech Research 5 (2013) 441-450

[23] J. Zheng, X. Li, K. Wang, J. Song, H. Qi. Electrochemical Nanoaptasensor for Continuous Monitoring of ATP Fluctuation at Subcellular Level. Analytical Chemistry 92 (2020) 10940-10945. https://doi.org/10.1021/acs.analchem.0c00569

[24] S. Zuliska, I.P. Maksum, Y. Einaga, G.T.M. Kadja, I. Irkham. Advances in electrochemical biosensors employing carbon-based electrodes for detection of biomarkers in diabetes mellitus. ADMET and DMPK 12 (2024) 487-527. https://doi.org/10.5599/admet.2361

[25] R. Mulyani, N. Yumna, I.P. Maksum, T. Subroto, Y.W. Hartati. Optimization of Aptamer-Based Electrochemical Biosensor for ATP Detection Using Screen-Printed Carbon Electrode/Gold Nanoparticles (SPCE/AuNP). Indonesian Journal of Chemistry 22 (2022) 1256-1268. https://doi.org/10.22146/ijc.72820

[26] R. Rustaman, R.R. Rahmawan, I.P. Maksum. in Silico Study of Aptamer Specificity for Detection of Adenosine Triphosphate (Atp) As Biosensor Development for Mitochondria Diabetes Diagnosis. Turkish Computational and Theoretical Chemistry 7 (2023) 58-69. https://doi.org/10.33435/TCANDTC.1181299

[27] M. Raymaekers, R. Smets, B. Maes, R. Cartuyvels. Checklist for optimization and validation of real-time PCR assays. Journal of Clinical Laboratory Analysis 23 (2009) 145-151. https://doi.org/10.1002/jcla.20307

[28] H.J. Agteresch, P.C. Dagnelie, J.W.O. Van Den Berg, J.H.P. Wilson. Adenosine triphosphate. Established and potential clinical applications. Drugs 58 (1999) 211-232. https://doi.org/10.2165/00003495-199958020-00002.

Comments (0)

No login
gif