[1] World Health Organization. Global Tuberculosis Report 2024, Available at https://doi.org/https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2024, accessed Agustus 2024
[2] D.A. Wulandari, Y.W. Hartati, A.U. Ibrahim, D.A.E Pitaloka, and Irkham. Multidrug-resistant tuberculosis. Clinica Chimica Acta 559 (2024) 119701. https://doi.org/10.1016/j.cca.2024.119701
[3] M. De Rycker, B. Baragaña, S.L. Duce, and I.H. Gilbert. Challenges and recent progress in drug discovery for tropical diseases. Nature 559 (2018) 498-506. https://doi.org/10.1038/s41586-018-0327-4
[4] V. Singh, K. Chibale. Strategies to combat multi-drug resistance in tuberculosis. Accounts of Chemical Research 54 (2021) 2361-2376. https://doi.org/10.1021/acs.accounts.0c00878
[5] L. Muthukrishnan. Multidrug resistant tuberculosis - Diagnostic challenges and its conquering by nanotechnology approach - An overview. Chemico-Biological Interactions 337 (2021) 109397. https://doi.org/10.1016/j.cbi.2021.109397
[6] A. Jain, P Dixit. Multidrug resistant to extensively drug resistant tuberculosis: What is next? Journal of Biosciences 33 (2008) 605-616. https://doi.org/10.1007/s12038-008-0078-8
[7] J.L. Khawbung, D. Nath, and S. Chakraborty, Drug resistant tuberculosis: A review. Comparative Immunology, Microbiology and Infectious Diseases 74 (2021) 101574. https://doi.org/10.1016/j.cimid.2020.101574
[8] J.G. Jang , J.H. Chung. Diagnosis and treatment of multidrug-resistant tuberculosis. Yeungnam University Journal of Medicine 34 (2020) 277-285. https://doi.org/10.12701/yujm.2020.00626
[9] E. Rivière, M.G. Whitfield, J. Nelen, T.H. Heupink, A.V. Rie. Identifying isoniazid resistance makers to guide inclusion of high-dose isoniazid in tuberculosis treatment regimens. Clinical Microbiology and Infection 26 (2020) 1332-1337. https://doi.org/10.1016/j.cmi.2020.07.004
[10] C. Metcalfe, I.K. Macdonald, E.J. Murphy, K.A. Brown, E.L. Raven, P.C.E. Moody. The tuberculosis prodrug isoniazid bound to activating peroxidases. Journal of Biological Chemistry 283 (2008) 6193-6200. https://doi.org/10.1074/jbc.M707412200
[11] P. Purkan, I. Ihsanawati, D. Natalia, Y.M. Syah, D.S. Retnoningrum, I. Siswanto. Molecular analysis of katG encoding catalase-peroxidase from clinical isolate of isoniazid-resistant mycobacterium tuberculosis. Journal of Medicine and Life 11 (2018) 160-167. https://pmc.ncbi.nlm.nih.gov/articles/PMC6101688/
[12] W.J. Koh, Y. Ko, C.K. Kim, K.S. Park, N.Y. Lee. Rapid Diagnosis of tuberculosis and multidrug resistantce using a MGIT 960 system. Annals of Laboratory Medicine 32 (2012) 264-269. http://dx.doi.org/10.3343/alm.2012.32.4.264
[13] A.H. Salim, K.J.M Aung, M.A Hossain, A.V. Deun. Early and rapid microscopy-based diagnosis of true treatment failure and MDR-TB. The International Journal of Tuberculosis and Lung Disease 10 (2006) 1248-1254. https://pubmed.ncbi.nlm.nih.gov/17131784/
[14] C.C. Boehme, P. Nabeta, D. Hillemann, M.P. Nicol, S. Shenai, F, Krapp, J. Allen, R. Tahirli, R. Blakemore, R. Rustomjee, A. Milovic, M. Jones, S. M. O’brien, D.H. Persing, S. Ruesch-Gerdes, E. Gotuzzo, C. Rodrigues, D. Alland, M.D. Perkins. Rapid Molecular Detection of tuberculosis and rifampicin resistant. The New England Journal of Medicine 363 (2010) 1005-1015. https://doi.org/10.1056/nejmoa0907847
[15] J.E. van Dongen, J.T.W. Berendsen, R.D.M. Steenbergen, R.M.F. Wolthuis, J.C.T. Eijkel, L.I. Segerink. Point-of-care CRISPR/Cas nucleic acid detection: recent advances, challenges and opportunities. Biosensors and Bioelectronics 166 (2020) 112445. https://doi.org/10.1016/j.bios.2020.112445
[16] M. Wang, R. Zhang, J. Li. CRISPR/Cas system redefine nucleic acid detection: principles and methods. Biosensors and Bioelectronics 165 (2020) 112430. https://doi.org/10.1016/j.bios.2020.112430
[17] M.I.H.L. Zein, A. Hardianto, Irkham, Y.W. Hartati, Identification of CRISPR/Cas12a (Cpf1) guideRNA Sequence Targeting the Mitochondrial DNA D-loop Region in Wild Pig (Sus scrofa) Through Homology Difference and Mismatch Analysis. Trends in Sciences 21 (2024) 7603. https://doi.org/10.48048/tis.2024.7603
[18] V. Konstantakos, A. Nentidis, A. Krithara, G. Paliouras, CRISPR-Cas9 gRNA efficiency prediction: an overview of predictive tools and the role of deep learning, Nucleic Acids Research 50 (2022) 3616-3637. https://doi.org/10.1093/nar/gkac192
[19] S.N. Zakiyyah, A.U. Ibrahim, M.S. Babiker, S. Gaffer, M. Ozsoz, M.I.H.L. Zein, Y.W. Hartati. Detection of Tropical Diseases Caused by Mosquitoes Using CRISPR-Based Biosensors. Tropical Medicine and Infectious Disease 7 (2022) 309. https://doi.org/10.3390/tropicalmed7100309
[20] Irkham, A.U. Ibrahim, P.C. Pwavodi, C.W. Nwekwo, Y.W. Hartati. CRISPR-based biosensor for the detection of Marburg and Ebola virus. Sensing and Bio-Sensing Research 43 (2024) 100641. https://doi.org/10.1016/j.sbsr.2023.100601
[21] Irkham, A.U. Ibrahim, C.W. Nwekwo, P.C. Pwavodi, S.N. Zakiyyah, M. Ozsoz, Y.W. Hartati. From nanotechnology to AI: The next generation of CRISPR-based smart biosensors for infectious disease detection. Microchemical Journal 208 (2025) 112577. https://doi.org/10.1016/j.microc.2024.112577
[22] G.I. Corsi, K. Qu, F. Alkan, X. Pan, Y. Luo, J. Gorodkin. CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context. Nature Communication 13 (2022) 3006. https://doi.org/10.1038/s41467-022-30515-0
[23] F.J.M. Mojica, C. Díez-Villaseñor, J. García-Martínez, C. Almendros. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155 (2009) 733-740. https://doi.org/10.1099/mic.0.023960-0
[24] N. Wong, W. Liu, X. Wang. WU-CRISPR: Characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biology 16 (2015) 218. https://doi.org/10.1186/s13059-015-0784-0
[25] L. Augustin, N. Agarwal. Designing a Cas9/gRNA-assisted quantitative real-time PCR (CARP) assay for identification of point mutations leading to rifampicin resistance in the human pathogen mycobacterium tuberculosis. Gene 857 (2023) 147173. https://doi.org/10.1016/j.gene.2023.147173
[26] E. Kivrak, T. Pauzaite, M.A. Copeland, J.G. hardy, P. Kara, M. Firlak, A.I. Yardimci, S. Yilmaz, F. Palaz, M. Ozsoz. Detection of CRISPR-Cas9-Mediated Mutations Using a Carbon Nanotube-Modified Electrochemical Genosensor. Biosensors 11/1) (2021) 17. https://doi.org/10.3390/bios11010017.
[27] M.I.H.L. Zein, C.Y. Kharismasari, A. Hardianto, S.N. Zakiyyah, R. Amalia, M. Ozsoz, M. Mirasoli, Irkham, Y.W. Hartati. A CRISPR/Cas12a electrochemical biosensing to detect pig mtDNA D-loop for ensuring food authenticity. Sensing and Bio-Sensing Research 47 (2025) 100755. https://doi.org/10.1016/j.sbsr.2025.100755
[28] H.N. Nguyen,, S. Hwang, S.W. Lee, E. Jin, M. Lee. Detection of HPV 16 and 18 L1 genes by a nucleic acid amplification-free electrochemical biosensor powered by CRISPR/Cas9. Bioelectrochemistry 162 (2025) 108861. https://doi.org/10.1016/j.bioelechem.2024.108861
[29] National Center for Biotechnology Information (NCBI). NCBI Nucleotide: AL123456.3 Mycobacterium tuberculosis H37Rv complete genome. https://www.ncbi.nlm.nih.gov/nuccore/AL123456.3 (accessed November 2, 2023)
[30] National Center for Biotechnology Information (NCBI). NCBI Nucleotide: AL123456.3 Mycobacterium tuberculosis H37Rv complete genome (rpoB gene). https://www.ncbi.nlm.nih.gov/nuccore/AL123456.3?from=759807&to=76332%205 (accessed November 2, 2023)
[31] National Center for Biotechnology Information (NCBI). NCBI Nucleotide: X68081.1 Mycobacterium tuberculosis gene for catalase-peroxidase (katG). https://www.ncbi.nlm.nih.gov/nuccore/X68081.1 (accessed November 2, 2023).
[32] M. Haeussler, K. Schönig, H. Eckert, A. Eschstruth, J. Mianné, J.B. Renaud, S. Schneider-Maunoury, A. Shkumatava, L. Teboul, J. Kent, J.S. Joly, J.P. Concordet. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biology 17 (2016) 148. https://doi.org/10.1186/s13059-016-1012-2
[33] J.G. Doench, N. Fusi, M. Sullender, M. Hedge, E.W. Vaimberg, K.F. Donovan, I. Smith, Z. Tothova, C. Wilen, R. Orchard, H.W. Virgin, J. Listgarten, D.E. Root. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology 34 (2016) 184-191. https://doi.org/10.1038/nbt.3437
[34] P.D. Hsu, D.A. Scott, J.A. Weinstein, F.A. Ran, S. Konermann, V. Agarwala, Y. Li, E.J. Fine, X. Wu, O. Shalem, T.J. Cradick, L.A. Marraffini, G. Bao, F. Zhang. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology 31 (2013) 827-832. https://doi.org/10.1038/nbt.2647
[35] T. Zheng, Y. Hou, P. Zhang, Z. Zhang, Y. Xu, L. Zhang, L. Niu, Y. Yang, D. Liang, F. Yi, W. Peng, W. Feng, Y. Yang, J. Chen, Y.Y. Zhu, L.H. Zhang, Q. Du. Profiling single-guide RNA specificity reveals a mismatch sensitive core sequence. Scientific Reports 8 (2017) 40638. https://doi.org/10.1038/srep40638
[36] S.C. Strutt, R.M. Torrez, E. Kaya, O.A. Negrete, Doudna. Jennifer A. RNA-dependent RNA targeting by CRISPR-Cas9. eLife 7 (2018) e32724. https://doi.org/10.7554/eLife.32724
[37] M. Zhou, X. Li, H. Wen, B. Huang, J. Ren, J. Zhang. The construction of CRISPR/Cas9-mediated FRET 16S rDNA sensor for detection of Mycobacterium tuberculosis. Analyst 148 (2023) 2308-2315. https://doi.org/10.1039/d3an00462g
[38] J. Huang, Z. Liang, Y. Liu, J. Zhou, F. He. Development of an MSPQC Nucleic Acid Sensor Based on CRISPR/Cas9 for the Detection of Mycobacterium tuberculosis. Analytical Chemistry 94 (2022) 11409-11415. https://doi.org/10.1021/acs.analchem.2c02538
[39] S.N. Zakiyyah, N.P. Satriana, N. Fransisca, S. Gaffar, N. Syakir, Irkham, Y.W. Hartati. Gold nanoparticle-modified screen-printed carbon electrodes for label-free detection of SARS-CoV-2 RNA using drop casting and spray coating methods. ADMET & DMPK 13 (2025) 2577. https://doi.org/10.5599/admet.2577
[40] C.J. Weber, N.E. Strom, O. Simoska. Electrochemical deposition of gold nanoparticles on carbon ultramicroelectrode arrays. Nanoscale 16 (2024) 16204-16217. https://doi.org/10.1039/D4NR02326A
[41] S. Zuliska, Irkham, S.N. Zakiyyah, Y.W. Hartati, Y.Einaga, I.P.Maksum. Electrochemical aptasensor for ultrasensitive detection of glycated hemoglobin (HbA1c) using gold-modified SPCE. Sensing and Bio-Sensing Research 47 (2025) 100765. https://doi.org/10.1016/j.sbsr.2025.100765
[42] C.M. Dundas, D. Demonte, S. Park. Streptavidin-biotin technology: improvements and innovations in chemical and biological applications. Applied Microbiology and Biotechnology 97 (2013). 9343-9353. https://doi.org/10.1007/s00253-013-5232-z
[43] M. Drozd, S. Karoń, E. Malinowska. Recent Advancements in Receptor Layer Engineering for Applications in SPR-Based Immunodiagnostics. Sensors 21(11) (2021) 3781. https://doi.org/10.3390/s21113781
[44] F. Gao, G. Liu, Y. Qiao, X. Dong, L. Liu. Streptavidin-Conjugated DNA for the Boronate Affinity-Based Detection of Poly(ADP-Ribose) Polymerase-1 with Improved Sensitivity. Biosensors 13 (2023) 723. https://doi.org/10.3390/bios13070723
[45] F.V. Oberhaus, D. Frense, D. Beckmann. Immobilization Techniques for Aptamers on Gold Electrodes for the Electrochemical Detection of Proteins: A Review. Biosensors 10 (2020) 45. http://dx.doi.org/10.3390/bios10050045
[46] G. Ströhle, H. Li. Comparison of blocking reagents for antibody microarray‑based immunoassays on glass and paper membrane substrates. Analytical and Bioanalytical Chemistry 415 (2023). 1967-1977. https://doi.org/10.1007/s00216-023-04614-w
[47] N. Chen, Z.J. Wu, H.C. Xu. Ferrocene as a Redox Catalyst for Organic Electrosynthesis. Israel Journal of Chemistry 64 (2023). https://doi.org/10.1002/ijch.202300097
[48] V. Mekler, L. Minakhin, K. Severinov. Mechanism of duplex DNA destabilization by RNA-guided Cas9 nuclease during target interrogation. The Proceedings of the National Academy of Sciences (PNAS) 114 (2017) 5443-5448. https://doi.org/10.1073/pnas.1619926114
[49] S. H. Sternberg, B. LaFrance, M. Kaplan, J. A. Doudna. Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527(2015) 110 - 113. https://doi.org/10.1038/nature15544
[50] F. Jiang, D. W. Taylor, J. S. Chen, J. E. Kornfeld, K. Zhou, A. J. Thompson, E. Nogales, J. A. Doudna. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351 (2016) 867-871. https://doi.org/10.1126/science.aad8282
Comments (0)