Tuneable carbon dots coated iron oxide nanoparticles as superior T1 contrast agent for multimodal imaging

[1] D.A. Fernandes. Review on metal-based theranostic nanoparticles for cancer therapy and imaging. Technology in Cancer Research & Treatment 22 (2023) 15330338231191493. https://doi.org/10.1177/15330338231191493

[2] D.A. Fernandes. Review on iron nanoparticles for cancer theranostics: synthesis, modification, characterization and applications. Journal of Nanoparticle Research 25 (2023) 170. https://doi.org/10.1007/s11051-023-05807-1

[3] K. Girigoswami, P. Pallavi, A. Girigoswami. Intricate subcellular journey of nanoparticles to the enigmatic domains of endoplasmic reticulum. Drug Delivery 30 (2023) 2284684. https://doi.org/10.1080/10717544.2023.2284684

[4] K. Elumalai, S. Srinivasan, A. Shanmugam. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomedical Technology 5 (2024) 109-122. https://doi.org/10.1016/j.bmt.2023.09.001

[5] K. Harini, K. Girigoswami, P. Pallavi, P. Gowtham, A. Thirumalai, K. Charulekha, A. Girigoswami. MoS2 nanocomposites for biomolecular sensing, disease monitoring, and therapeutic applications. Nano Futures 7 (2023) 032001. https://doi.org/10.1088/2399-1984/ace178

[6] S.W. Vedakumari, R. Senthil, S. Sekar, C.S. Babu, T.P. Sastry. Enhancing anti-cancer activity of erlotinib by antibody conjugated nanofibrin - In vitro studies on lung adenocarcinoma cell lines. Materials Chemistry and Physics 224 (2019) 328-333. https://doi.org/10.1016/j.matchemphys.2018.11.061

[7] J. Affrald R, N. M, S. Narayan. A comprehensive review of manganese dioxide nanoparticles and strategy to overcome toxicity. Nanomedicine Journal 10 (2023) 1-15. https://doi.org/10.22038/nmj.2022.66131.1694

[8] K. Wu, D. Su, J. Liu, R. Saha, J.-P. Wang. Magnetic nanoparticles in nanomedicine: a review of recent advances. Nanotechnology 30 (2019) 502003. https://doi.org/10.1088/1361-6528/ab4241

[9] M.I. Anik, M.K. Hossain, I. Hossain, A.M.U.B. Mahfuz, M.T. Rahman, I. Ahmed. Recent progress of magnetic nanoparticles in biomedical applications: A review. Nano Select 2 (2021) 1146-1186. https://doi.org/10.1002/nano.202000162

[10] S. Khizar, N.M. Ahmad, N. Zine, N. Jaffrezic-Renault, A. Errachid-el-salhi, A. Elaissari. Magnetic Nanoparticles: From Synthesis to Theranostic Applications. ACS Applied Nano Materials 4 (2021) 4284-4306. https://doi.org/10.1021/acsanm.1c00852

[11] K. Harini, K. Girigoswami, P. Pallavi, P. Gowtham, A.D. Prabhu, A. Girigoswami. Advancement of magnetic particle imaging in diagnosis and therapy. Advances in Natural Sciences: Nanoscience and Nanotechnology 15 (2024) 023002. https://doi.org/10.1088/2043-6262/ad3b7a

[12] C. Comanescu. Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. Chemistry 4 (2022) 872-930. https://doi.org/10.3390/chemistry4030063

[13] R. Dubey, N. Sinha, N.R. Jagannathan. Potential of in vitro nuclear magnetic resonance of biofluids and tissues in clinical research. NMR in Biomedicine 36 (2023) e4686. https://doi.org/10.1002/nbm.4686

[14] V. Haribabu, K. Girigoswami, A. Girigoswami. Magneto-silver core–shell nanohybrids for theragnosis. Nano-Structures & Nano-Objects 25 (2021) 100636. https://doi.org/10.1016/j.nanoso.2020.100636

[15] S.B. Joga, D. Korabandi, S.K. Lakkaboyana, V. Kumar. Synthesis of iron nanoparticles on lemon peel carbon dots (LP-CDs@Fe3O4) applied in Photo-Catalysis, Antioxidant, Antidiabetic, and Hemolytic activity. Inorganic Chemistry Communications 174 (2025) 113960. https://doi.org/10.1016/j.inoche.2025.113960

[16] H. Perumalsamy, S.R. Balusamy, J. Sukweenadhi, S. Nag, D. MubarakAli, M. El-Agamy Farh, H. Vijay, S. Rahimi. A comprehensive review on Moringa oleifera nanoparticles: importance of polyphenols in nanoparticle synthesis, nanoparticle efficacy and their applications. Journal of nanobiotechnology 22 (2024) 71. https://doi.org/10.1186/s12951-024-02332-8

[17] S. Kumar, M. Kumar, A. Singh. Synthesis and characterization of iron oxide nanoparticles (Fe2O3, Fe3O4): a brief review. Contemporary Physics 62 (2021) 144-164. https://doi.org/10.1080/00107514.2022.2080910

[18] P. Farinha, J.M.P. Coelho, C.P. Reis, M.M. Gaspar. A Comprehensive Updated Review on Magnetic Nanoparticles in Diagnostics. Nanomaterials 11 (2021) 3432. https://doi.org/10.3390/nano11123432

[19] A.C. Anselmo, S. Mitragotri. Nanoparticles in the clinic. Bioengineering & translational medicine 1 (2016) 10-29. https://doi.org/10.1002/btm2.10003

[20] P. Chauhan, P. Kushwaha. Applications of Iron Oxide Nanoparticles in Magnetic Resonance Imaging (MRI). Nanoscience & Nanotechnology-Asia 11 (2021) 290-299. https://doi.org/10.2174/2210681210999200728102036

[21] D.K. Dwivedi, N.R. Jagannathan. Emerging MR methods for improved diagnosis of prostate cancer by multiparametric MRI. Magnetic Resonance Materials in Physics, Biology and Medicine 35 (2022) 587-608. https://doi.org/10.1007/s10334-022-01031-5

[22] V. Haribabu, P. Sharmiladevi, N. Akhtar, A.S. Farook, K. Girigoswami, A. Girigoswami. Label Free Ultrasmall Fluoromagnetic Ferrite-clusters for Targeted Cancer Imaging and Drug Delivery. Current Drug Delivery 16 (2019) 233-241. https://doi.org/10.2174/1567201816666181119112410

[23] N. Iyad, M. S.Ahmad, S.G. Alkhatib, M. Hjouj. Gadolinium contrast agents- challenges and opportunities of a multidisciplinary approach: Literature review. European Journal of Radiology Open 11 (2023) 100503. https://doi.org/10.1016/j.ejro.2023.100503

[24] B. Murugesan, S. Ramanarayanan, S. Vijayarangan, K. Ram, N.R. Jagannathan, M. Sivaprakasam. A deep cascade of ensemble of dual domain networks with gradient-based T1 assistance and perceptual refinement for fast MRI reconstruction. Computerized medical imaging and graphics 91 (2021) 101942. https://doi.org/10.1016/j.compmedimag.2021.101942

[25] P. Gowtham, K. Girigoswami, A.D. Prabhu, P. Pallavi, A. Thirumalai, K. Harini, A. Girigoswami. Hydrogels of Alginate Derivative-Encased Nanodots Featuring Carbon-Coated Manganese Ferrite Cores with Gold Shells to Offer Antiangiogenesis with Multimodal Imaging-Based Theranostics. Advanced Therapeutics 7 (2024) 2400054. https://doi.org/10.1002/adtp.202400054

[26] S.I. Eguía-Eguía, L. Gildo-Ortiz, M. Pérez-González, S.A. Tomas, J.A. Arenas-Alatorre, J. Santoyo-Salazar. Magnetic domains orientation in (Fe3O4/γ-Fe2O3) nanoparticles coated by Gadolinium-diethylenetriaminepentaacetic acid (Gd3+-DTPA). Nano Express 2 (2021) 020019. https://doi.org/10.1088/2632-959X/ac0107

[27] K. Yano, T. Matsumoto, Y. Okamoto, N. Kurokawa, T. Hasebe, A. Hotta. Fabrication of Gd-DOTA-functionalized carboxylated nanodiamonds for selective MR imaging (MRI) of the lymphatic system. Nanotechnology 32 (2021) 235102. https://doi.org/10.1088/1361-6528/abeb9c

[28] V. Frantellizzi, M. Conte, M. Pontico, A. Pani, R. Pani, G. De Vincentis. New Frontiers in Molecular Imaging with Superparamagnetic Iron Oxide Nanoparticles (SPIONs): Efficacy, Toxicity, and Future Applications. Nuclear Medicine and Molecular Imaging 54 (2020) 65-80. https://doi.org/10.1007/s13139-020-00635-w

[29] Y. Bao, J. Sherwood, Z. Sun. Magnetic iron oxide nanoparticles as T 1 contrast agents for magnetic resonance imaging. Journal of Materials Chemistry C 6 (2018) 1280-1290. https://doi.org/10.1039/C7TC05854C

[30] H. Kothandaraman, A. Kaliyamoorthy, A. Rajaram, C.R. Kalaiselvan, N.K. Sahu, P. Govindasamy, M. Rajaram. Functionalization and Haemolytic analysis of pure superparamagnetic magnetite nanoparticle for hyperthermia application. Journal of Biological Physics 48 (2022) 383-397. https://doi.org/10.1007/s10867-022-09614-y

[31] Y.-X.J. Wang. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World journal of gastroenterology 21 (2015) 13400. https://doi.org/10.3748/wjg.v21.i47.13400

[32] I. Fernández-Barahona, M. Muñoz-Hernando, J. Ruiz-Cabello, F. Herranz, J. Pellico. Iron Oxide Nanoparticles: An Alternative for Positive Contrast in Magnetic Resonance Imaging. Inorganics 8 (2020) 28. https://doi.org/10.3390/inorganics8040028

[33] D. Ling, T. Hyeon. Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small 9 (2013) 1450-1466. https://doi.org/10.1002/smll.201202111

[34] J.R. Vargas-Ortiz, C. Gonzalez, K. Esquivel. Magnetic Iron Nanoparticles: Synthesis, Surface Enhancements, and Biological Challenges. Processes 10 (2022) 2282. https://doi.org/10.3390/pr10112282

[35] R.J. Affrald, S.P.N. Banu, D. Arjunan, K.A. Selvamani, S. Narayan. Synthesis and Characterisation of Alginate Functionalized Gold Nanoparticles for Melamine Detection. BioNanoScience 13 (2023) 145-152. https://doi.org/10.1007/s12668-022-01050-5

[36] P. Sharmiladevi, N. Akhtar, V. Haribabu, K. Girigoswami, S. Chattopadhyay, A. Girigoswami. Excitation wavelength independent carbon-decorated ferrite nanodots for multimodal diagnosis and stimuli responsive therapy. ACS Applied Bio Materials 2 (2019) 1634-1642. https://doi.org/10.1021/acsabm.9b00039

[37] C.F.G.C. Geraldes. Rational Design of Magnetic Nanoparticles as T1–T2 Dual-Mode MRI Contrast Agents. Molecules 29 (2024) 1352. https://doi.org/10.3390/molecules29061352

[38] H. Yue, D. Zhao, T. Tegafaw, M.Y. Ahmad, A.K. Saidi, Y. Liu, H. Cha, B.W. Yang, K.S. Chae, S.-W. Nam, Y. Chang, G.H. Lee. Core-Shell Fe3O4@C Nanoparticles as Highly Effective T2 Magnetic Resonance Imaging Contrast Agents: In Vitro and In Vivo Studies. Nanomaterials 14 (2024) 177. https://doi.org/10.3390/nano14020177

[39] P. Gowtham, K. Girigoswami, P. Pallavi, K. Harini, I. Gurubharath, A. Girigoswami. Alginate-Derivative Encapsulated Carbon Coated Manganese-Ferrite Nanodots for Multimodal Medical Imaging. Pharmaceutics 14 (2022) 2550. https://doi.org/10.3390/pharmaceutics14122550

[40] P. Sharmiladevi, V. Haribabu, K. Girigoswami, A. Sulaiman Farook, A. Girigoswami. Effect of Mesoporous Nano Water Reservoir on MR Relaxivity. Scientific reports 7 (2017) 11179. https://doi.org/10.1038/s41598-017-11710-2

[41] L. Li, K. Mak, C. Leung, K. Chan, W. Chan, W. Zhong, P. Pong. Effect of synthesis conditions on the properties of citric-acid coated iron oxide nanoparticles. Microelectronic Engineering 110 (2013) 329-334. https://doi.org/10.1016/j.mee.2013.02.045

[42] B. Jiang, Y. Tang, Y. Qu, J.-Q. Wang, Y. Xie, C. Tian, W. Zhou, H. Fu. Thin carbon layer coated Ti3+-TiO2 nanocrystallites for visible-light driven photocatalysis. Nanoscale 7 (2015) 5035-5045. https://doi.org/10.1039/C5NR00032G

[43] X. Liu, L. He, G. Han, J. Sheng, Y. Yu, W. Yang. Design of rich defects carbon coated MnFe2O4/LaMnO3/LaFeO3 heterostructure nanocomposites for broadband electromagnetic wave absorption. Chemical Engineering Journal 476 (2023) 146199. https://doi.org/10.1016/j.cej.2023.146199

[44] X. Chen, Y. Zhou, H. Han, X. Wang, L. Zhou, Z. Yi, Z. Fu, X. Wu, G. Li, L. Zeng. Optical and magnetic properties of small-size core–shell Fe3O4@C nanoparticles. Materials today chemistry 22 (2021) 100556. https://doi.org/10.1016/j.mtchem.2021.100556

[45] D. Caruntu, G. Caruntu, C.J. O'Connor. Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols. Journal of Physics D: Applied Physics 40 (2007) 5801. https://doi.org/10.1088/0022-3727/40/19/001

[46] S. Chaudhary, A. Umar, K. Bhasin, S. Singh. Applications of carbon dots in nanomedicine. Journal of Biomedical Nanotechnology 13 (2017) 591-637. https://doi.org/10.1166/jbn.2017.2390

[47] A. Thirumalai, K. Girigoswami, A.D. Prabhu, P. Durgadevi, V. Kiran, A. Girigoswami. 8-Anilino-1-naphthalenesulfonate-Conjugated Carbon-Coated Ferrite Nanodots for Fluoromagnetic Imaging, Smart Drug Delivery, and Biomolecular Sensing. Pharmaceutics 16 (2024) 1378. https://doi.org/10.3390/pharmaceutics16111378

[48] V. Haribabu, K. Girigoswami, P. Sharmiladevi, A. Girigoswami. Water–Nanomaterial Interaction to Escalate Twin-Mode Magnetic Resonance Imaging. ACS Biomaterials Science & Engineering 6 (2020) 4377-4389. https://doi.org/10.1021/acsbiomaterials.0c00409

[49] P. Gowtham, K. Harini, A. Thirumalai, P. Pallavi, K. Girigoswami, A. Girigoswami. Synthetic routes to theranostic applications of carbon-based quantum dots. ADMET and DMPK 11 (2023) 457–485. https://doi.org/10.5599/admet.1747

[50] A. Abou Elfadl, A.M.M. Ibrahim, A.M. El Sayed, S. Saber, S. Elnaggar, I.M. Ibrahim. Influence of α-Fe2O3, CuO and GO 2D nano-fillers on the structure, physical properties and antifungal activity of Na-CMC–PAAm blend. Scientific reports 13 (2023) 12358. https://doi.org/10.1038/s41598-023-39056-y

[51] Y. Yan, H. Tang, F. Wu, R. Wang, M. Pan. One-step self-assembly synthesis α-Fe2O3 with carbon-coated nanoparticles for stabilized and enhanced supercapacitors electrode. Energies 10 (2017) 1296. https://doi.org/10.3390/en10091296

[52] M. Qasim, A.M. Iqbal, M.T. Khan, M.A. Ghanem. Nanostructural Modification of Fe2O3 Nanoparticles: Carbon Coating for Enhanced Magnetic Behavior. physica status solidi (RRL)–Rapid Research Letters (2025) 2400230. https://doi.org/10.1002/pssr.202400230

[53] M. Moeni, M. Edokali, M. Rogers, O. Cespedes, L. Tliba, T. Habib, R. Menzel, A. Hassanpour. Effect of reaction and post-treatment conditions on physico-chemical properties of magnetic iron oxide nano-particles. Particuology 91 (2024) 155-167. https://doi.org/10.1016/j.partic.2024.02.006

[54] R. Ludmerczki, S. Mura, C.M. Carbonaro, I.M. Mandity, M. Carraro, N. Senes, S. Garroni, G. Granozzi, L. Calvillo, S. Marras. Carbon dots from citric acid and its intermediates formed by thermal decomposition. Chemistry–A European Journal 25 (2019) 11963-11974. https://doi.org/10.1002/chem.201902497

[55] W. Kasprzyk, T. Świergosz, S. Bednarz, K. Walas, N.V. Bashmakova, D. Bogdał. Luminescence phenomena of carbon dots derived from citric acid and urea – a molecular insight. Nanoscale 10 (2018) 13889-13894. https://doi.org/10.1039/C8NR03602K

Comments (0)

No login
gif