Morphine electrochemical determination using SnO2 nanostructure-modified glassy carbon electrode in the presence of diclofenac

[1] N. Ozber, L. Yu, J.M. Hagel, P.J. Facchini. Strong feedback inhibition of key enzymes in the morphine biosynthetic pathway from opium poppy detectable in engineered yeast. ACS Chemical Biology 18 (2023) 419-430. https://doi.org/10.1021/acschembio.2c00873.

[2] M.H. Spyridaki, P. Kiousi, A. Vonaparti, P. Valavani, V. Zonaras, M. Zahariou, C. Georgakopoulos. Doping control analysis in human urine by liquid chromatography–electrospray ionization ion trap mass spectrometry for the Olympic Games Athens 2004: Determination of corticosteroids and quantification of ephedrines, salbutamol and morphine. Analytica Chimica Acta 573 (2006) 242-249. https://doi.org/10.1016/j.aca.2006.04.042.

[3] H. Abdolmohammad-Zadeh, A. Zamani, Z. Shamsi. Preconcentration of morphine and codeine using a magnetite/reduced graphene oxide/silver nano-composite and their determination by high-performance liquid chromatography. Journal of Chromatography A 1590 (2019) 2-9. https://doi.org/10.1016/j.chroma.2018.12.064

[4] R.V. Rondina, A.L. Bandoni, J.D. Coussio, Quantitative determination of morphine in poppy capsules by differential spectrophotometry. Journal of Pharmaceutical Sciences 62 (1973) 502-504. https://doi.org/10.1002/jps.2600620337

[5] F. Norouzi, M. Khoubnasabjafari, V. Jouyban-Gharamaleki, J. Soleymani, A. Jouyban, M.A. Farajzadeh, M.R.A. Mogaddam. Determination of morphine and oxymorphone in exhaled breath condensate samples: Application of microwave enhanced three–component deep eutectic solvent-based air–assisted liquid–liquid microextraction and derivatization prior to gas chromatography–mass spectrometry. Journal of Chromatography B 1152 (2020)122256. https://doi.org/10.1016/j.jchromb.2020.122256.

[6] J. Nebu, J.S. Anjali Devi, R.S. Aparna, B. Aswathy, A.O. Aswathy, G. Sony. Fluorometric determination of morphine via its effect on the quenching of fluorescein by gold nanoparticles through a surface energy transfer process. Microchimica Acta 185 (2018) 532. https://doi.org/10.1007/s00604-018-3050-9

[7] H.X. Hao, H. Zhou, J. Chang, J. Zhu, T.X. Wei. Molecularly imprinted polymers for highly sensitive detection of morphine using surface plasmon resonance spectroscopy. Chinese Chemical Letters 22 (2011) 477-480. https://doi.org/10.1016/j.cclet.2010.11.004.

[8] J.A.M. Pulgarín, L.F.G. Bermejo, J.M.L. Gallego, M.N.S. Garcíam. Simultaneous stopped-flow determination of morphine and naloxone by time-resolved chemiluminescence. Talanta 74 (2008) 1539-1546. https://doi.org/10.1016/j.talanta.2007.09.032.

[9] C.C.D.S. Andrade, M.C. Marra, R.G. Rocha, M. Di-Oliveira, R. D. Oliveira, R.A. Muñoz. Simultaneous determination of morphine and codeine using additive-manufactured electrodes with conductive filaments based on recycled PLA. Microchemical Journal 213 (2025) 113830. https://doi.org/10.1016/j.microc.2025.113830.

[10] E.J. Kim, Y. Kim, S. Kwon, S.H. Kang, T.H. Park. Forensic electrochemical sensor for fentanyl and morphine detection using an Au–NiO x-electrodeposited carbon electrode. RSC Advances 15 (2025) 13497-13504. https://doi.org/10.1039/d5ra00523j.

[11] P. Theodosis-Nobelos, E.A. Rekka. Tyrosine and proline conjugated trolox, hydroxy-cinnnamic acid and diclofenac hybrids as strong hypolipidemic and anti-inflammatory agents. Bioorganic & Medicinal Chemistry Letters 122 (2025) 130194. https://doi.org/10.1016/j.bmcl.2025.130194.

[12] M.J. Mun, J. Labad, E. Martinez, B. Boned, J. Marin. Effect of diclofenac on synovial fluid prostaglandin E2 after intra-articular administration in rabbits. Pharmacological Research 31 (1995) 131. https://doi.org/10.1016/1043-6618(95)86784-8.

[13] J.E. Montgomery, C.J. Sutherland, I.G. Kestin, J.R. Sneyd. Morphine consumption in patients receiving rectal paracetamol and diclofenac alone and in combination. British Journal of Anaesthesia 77 (1996) 445-447. https://doi.org/10.1093/bja/77.4.445.

[14] M. Gashu, B.A. Aragaw, M. Tefera, A. Abebe. Cobalt (II) bis-(1, 10-phenanthroline) complex electropolymerized glassy carbon electrode and its electrocatalytic sensing of diclofenac in pharmaceuticals and biological samples. Colloids and Surfaces A 693 (2024) 133974. https://doi.org/10.1016/j.colsurfa.2024.133974.

[15] A. Moutcine, C. Laghlimi, Y. Ziat, S. El Bahraoui, H. Belkhanchi, A. Jouaiti. Advanced design of chemically modified electrodes for the electrochemical analysis of uric acid and xanthine. Journal of Pharmaceutical and Biomedical Analysis 253 (2024) 116536. https://doi.org/10.1016/j.jpba.2024.116536.

[16] A. Curulli, F. Valentini, G. Padeletti, M. Viticoli, D. Caschera, G. Palleschi. Smart (Nano) materials: TiO2 nanostructured films to modify electrodes for assembling of new electrochemical probes. Sensors and Actuators B 111 (2005) 441-449. https://doi.org/10.1016/j.snb.2005.03.044.

[17] G. Singh, A. Kumar, P. Prasher, H. Mudila. rGO/ZnO Modified Polyaniline Hybrid Ternary Nanocomposite as Highly Sensitive Electrode for Pb2+ Detection in Aqueous Sources. Journal of the Indian Chemical Society 6 (2025) 101718. https://doi.org/10.1016/j.jics.2025.101718.

[18] X. Wang, H. Mu, M. Zhu, F. Li, J. Li. Regulating the Cu2Se-SnO nanosheet heterostructure interface for efficient CO2 conversion to tunable syngas ratios. Journal of Alloys and Compounds 985 (2024) 174108. https://doi.org/10.1016/j.jallcom.2024.174108.

[19] W. Yue, S. Yang, Y. Ren, X. Yang. In situ growth of Sn, SnO on graphene nanosheets and their application as anode materials for lithium-ion batteries. Electrochimica Acta 92 (2013) 412-420. https://doi.org/10.1016/j.electacta.2013.01.058.

[20] T. Li, W. Zeng, H. Long, Z. Wang. Nanosheet-assembled hierarchical SnO2 nanostructures for efficient gas-sensing applications. Sensors and Actuators B 231 (2016) 120-128. https://doi.org/10.1016/j.snb.2016.03.003.

Comments (0)

No login
gif