[1] P. Berben, E. Borbás, Intestinal Drug Absorption: Cell-Free Permeation Systems, in Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays, F.J. Hock, M.R. Gralinski, M.K. Pugsley (Eds.), Springer International Publishing, Cham, 2022, p. 1-29. https://doi.org/10.1007/978-3-030-73317-9_95-1
[2] P. Berben, A. Bauer-Brandl, M. Brandl, B. Faller, G.E. Flaten, A.-C. Jacobsen, J. Brouwers, P. Augustijns. Drug permeability profiling using cell-free permeation tools: Overview and applications. European Journal of Pharmaceutical Sciences 119 (2018) 219-233. https://doi.org/https://doi.org/10.1016/j.ejps.2018.04.016
[3] A. Adhikari, P.R. Seo, J.E. Polli. Characterization of Dissolution-Permeation System using Hollow Fiber Membrane Module and Utility to Predict in Vivo Drug Permeation Across BCS Classes. Journal of Pharmaceutical Sciences 111 (2022) 3075-3087. https://doi.org/10.1016/j.xphs.2022.07.002
[4] E. Borbás, A. Balogh, K. Bocz, J. Müller, É. Kiserdei, T. Vigh, B. Sinkó, A. Marosi, A. Halász, Z. Dohányos, L. Szente, G.T. Balogh, Z.K. Nagy. In vitro dissolution-permeation evaluation of an electrospun cyclodextrin-based formulation of aripiprazole using μFlux™. International Journal of Pharmaceutics 491 (2015) 180-189. https://doi.org/10.1016/j.ijpharm.2015.06.019
[5] A. Avdeef, M. Strafford, E. Block, M.P. Balogh, W. Chambliss, I. Khan. Drug absorption in vitro model: filter-immobilized artificial membranes. 2. Studies of the permeability properties of lactones in Piper methysticum Forst. European Journal of Pharmaceutical Sciences 14 (2001) 271-280. https://doi.org/10.1016/s0928-0987(01)00191-9
[6] B. Sinkó, T.M. Garrigues, G.T. Balogh, Z.K. Nagy, O. Tsinman, A. Avdeef, K. Takács-Novák. Skin-PAMPA: a new method for fast prediction of skin penetration. European Journal of Pharmaceutical Sciences 45 (2012) 698-707. https://doi.org/10.1016/j.ejps.2012.01.011
[7] G.E. Flaten, A.B. Dhanikula, K. Luthman, M. Brandl. Drug permeability across a phospholipid vesicle based barrier: a novel approach for studying passive diffusion. European Journal of Pharmaceutical Sciences 27 (2006) 80-90. https://doi.org/10.1016/j.ejps.2005.08.007
[8] M. di Cagno, H.A. Bibi, A. Bauer-Brandl. New biomimetic barrier Permeapad™ for efficient investigation of passive permeability of drugs. European Journal of Pharmaceutical Sciences 73 (2015) 29-34. https://doi.org/10.1016/j.ejps.2015.03.019
[9] A. Avdeef, Absorption and Drug Development: Solubility, Permeability, and Charge State; 2nd ed, John Wiley and Sons: United States. https://doi.org/10.1002/9781118286067
[10] K. Sugano, Biopharmaceutics Modeling and Simulations: Theory, Practice, Methods, and Applications, John Wiley & Sons, 2012. https://doi.org/10.1002/9781118354339.ch7
[11] A. Avdeef. The rise of PAMPA. Expert Opin Drug Metab Toxicol 1 (2005) 325-342. https://doi.org/10.1517/17425255.1.2.325
[12] B. Faller. Artificial membrane assays to assess permeability. Current Drug Metabolism 9 (2008) 886-892. https://doi.org/10.2174/138920008786485227
[13] M. Kansy, F. Senner, K. Gubernator. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. Journal of Medicinal Chemistry 41 (1998) 1007-1010. https://doi.org/10.1021/jm970530e
[14] D. Riethorst, J. Brouwers, J. Motmans, P. Augustijns. Human intestinal fluid factors affecting intestinal drug permeation in vitro. European Journal of Pharmaceutical Sciences 121 (2018) 338-346. https://doi.org/https://doi.org/10.1016/j.ejps.2018.06.007
[15] J.B. Eriksen, J.J. Christiansen, A. Bauer-Brandl, M. Ruponen, J. Rautio, M. Brandl. In-vitro dynamic dissolution/bioconversion/permeation of fosamprenavir using a novel tool with an artificial biomimetic permeation barrier and microdialysis-sampling. European Journal of Pharmaceutical Sciences 181 (2023) 106366. https://doi.org/10.1016/j.ejps.2022.106366
[16] C. Washington. Drug release from microdisperse systems: a critical review. International Journal of Pharmaceutics 58 (1990) 1-12. https://doi.org/10.1016/0378-5173(90)90280-H
[17] P. Saokham, A. Sá Couto, A. Ryzhakov, T. Loftsson. The self-assemble of natural cyclodextrins in aqueous solutions: Application of miniature permeation studies for critical aggregation concentration (cac) determinations. International Journal of Pharmaceutics 505 (2016) 187-193. https://doi.org/10.1016/j.ijpharm.2016.03.049
[18] J. Bouayed, L. Hoffmann, T. Bohn. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry 128 (2011) 14-21. https://doi.org/10.1016/j.foodchem.2011.02.052
[19] S.A. Raina, G.G. Zhang, D.E. Alonzo, J. Wu, D. Zhu, N.D. Catron, Y. Gao, L.S. Taylor. Impact of Solubilizing Additives on Supersaturation and Membrane Transport of Drugs. Pharmaceutical Research 32 (2015) 3350-3364. https://doi.org/10.1007/s11095-015-1712-4
[20] A.S. Indulkar, Y. Gao, S.A. Raina, G.G. Zhang, L.S. Taylor. Exploiting the Phenomenon of Liquid-Liquid Phase Separation for Enhanced and Sustained Membrane Transport of a Poorly Water-Soluble Drug. Molecular Pharmaceutics 13 (2016) 2059-2069. https://doi.org/10.1021/acs.molpharmaceut.6b00202
[21] J.P. O'Shea, P. Augustijns, M. Brandl, D.J. Brayden, J. Brouwers, B.T. Griffin, R. Holm, A.C. Jacobsen, H. Lennernäs, Z. Vinarov, C.M. O'Driscoll. Best practices in current models mimicking drug permeability in the gastrointestinal tract - An UNGAP review. European Journal of Pharmaceutical Sciences 170 (2022) 106098. https://doi.org/10.1016/j.ejps.2021.106098
[22] E. Borbás, P. Tőzsér, K. Tsinman, O. Tsinman, K. Takács-Novák, G. Völgyi, B. Sinkó, Z.K. Nagy. Effect of Formulation Additives on Drug Transport through Size-Exclusion Membranes. Molecular Pharmaceutics 15 (2018) 3308-3317. https://doi.org/10.1021/acs.molpharmaceut.8b00343
[23] P. Berben, J. Brouwers, P. Augustijns. The artificial membrane insert system as predictive tool for formulation performance evaluation. International Journal of Pharmaceutics 537 (2018) 22-29. https://doi.org/https://doi.org/10.1016/j.ijpharm.2017.12.025
[24] P. Berben, J. Brouwers, P. Augustijns. Assessment of Passive Intestinal Permeability Using an Artificial Membrane Insert System. Journal of Pharmaceutical Sciences 107 (2018) 250-256. https://doi.org/10.1016/j.xphs.2017.08.002
[25] K. Sakai. Determination of pore size and pore size distribution: 2. Dialysis membranes. Journal of Mem¬brane Science 96 (1994) 91-130. https://doi.org/https://doi.org/10.1016/0376-7388(94)00127-8
[26] A. Dahan, A. Beig, D. Lindley, J.M. Miller. The solubility-permeability interplay and oral drug formulation design: Two heads are better than one. Advanced Drug Delivery Reviews 101 (2016) 99-107. https://doi.org/10.1016/j.addr.2016.04.018
[27] S. Kádár, P. Tőzsér, B. Nagy, A. Farkas, Z.K. Nagy, O. Tsinman, K. Tsinman, D. Csicsák, G. Völgyi, K. Takács-Novák, E. Borbás, B. Sinkó. Flux-Based Formulation Development-A Proof of Concept Study. The AAPS Journal 24 (2022) 22. https://doi.org/10.1208/s12248-021-00668-9
[28] A. De Simone, L. Davani, S. Montanari, V. Tumiatti, S. Avanessian, F. Testi, V. Andrisano. Combined Methodologies for Determining In Vitro Bioavailability of Drugs and Prediction of In Vivo Bioequivalence From Pharmaceutical Oral Formulations. Frontiers in Chemistry 9 (2021) 741876. https://doi.org/10.3389/fchem.2021.741876
[29] A. Beig, J.M. Miller, D. Lindley, R.A. Carr, P. Zocharski, R. Agbaria, A. Dahan. Head-To-Head Comparison of Different Solubility-Enabling Formulations of Etoposide and Their Consequent Solubility-Permeability Interplay. Journal of Pharmaceutical Sciences 104 (2015) 2941-2947. https://doi.org/10.1002/jps.24496
[30] M. Van der Veken, J. Brouwers, N. Parrott, P. Augustijns, C. Stillhart. Investigating the effect of whey and casein proteins on drug solubility from a paediatric drug absorption perspective. International Journal of Pharmaceutics: X 8 (2024) 100290. https://doi.org/10.1016/j.ijpx.2024.100290
[31] K. Ueda, L.S. Taylor. Partitioning of surfactant into drug-rich nanodroplets and its impact on drug thermodynamic activity and droplet size. Journal of Controlled Release 330 (2021) 229-243. https://doi.org/10.1016/j.jconrel.2020.12.018
[32] M.J. Jackson, U.S. Kestur, M.A. Hussain, L.S. Taylor. Dissolution of Danazol Amorphous Solid Dispersions: Supersaturation and Phase Behavior as a Function of Drug Loading and Polymer Type. Molecular Pharmaceutics 13 (2016) 223-231. https://doi.org/10.1021/acs.molpharmaceut.5b00652
[33] T. Loftsson, S.B. Vogensen, C. Desbos, P. Jansook. Carvedilol: solubilization and cyclodextrin complexation: a technical note. AAPS PharmSciTech 9 (2008) 425-430. https://doi.org/10.1208/s12249-008-9055-7
[34] T. Loftsson. Cyclodextrins in Parenteral Formulations. Journal of Pharmaceutical Sciences 110 (2021) 654-664. https://doi.org/10.1016/j.xphs.2020.10.026
[35] S. Sripetch, M. Prajapati, T. Loftsson. Cyclodextrins and Drug Membrane Permeation: Thermodynamic Considerations. Journal of Pharmaceutical Sciences 111 (2022) 2571-2580. https://doi.org/https://doi.org/10.1016/j.xphs.2022.04.015
[36] Y.L. Hsieh, G.A. Ilevbare, B. Van Eerdenbrugh, K.J. Box, M.V. Sanchez-Felix, L.S. Taylor. pH-Induced precipitation behavior of weakly basic compounds: determination of extent and duration of supersaturation using potentiometric titration and correlation to solid state properties. Pharmaceutical Research 29 (2012) 2738-2753. https://doi.org/10.1007/s11095-012-0759-8
[37] J.H. Fagerberg, Y. Al-Tikriti, G. Ragnarsson, C.A.S. Bergström. Ethanol Effects on Apparent Solubility of Poorly Soluble Drugs in Simulated Intestinal Fluid. Molecular Pharmaceutics 9 (2012) 1942-1952. https://doi.org/10.1021/mp2006467
[38] H. Pataki, I. Markovits, B. Vajna, Z.K. Nagy, G. Marosi. In-Line Monitoring of Carvedilol Crystallization Using Raman Spectroscopy. Crystal Growth & Design 12 (2012) 5621-5628. https://doi.org/10.1021/cg301135z
[39] H. Pataki, I. Csontos, Z.K. Nagy, B. Vajna, M. Molnar, L. Katona, G. Marosi. Implementation of Raman Signal Feedback to Perform Controlled Crystallization of Carvedilol. Organic Process Research & Development 17 (2013) 493-499. https://doi.org/10.1021/op300062t
[40] A. Singh, M. Pallastrelli, M. Santoro. Direct chiral separations of third generation b-blockers through high performance liquid chromatography. Scientia Chromatographica 7 (2015) 65-84. https://www.researchgate.net/publication/281664439_Direct_chiral_separations_of_third_generation_b-blockers_through_high_performance_liquid_chromatography_a_review
[41] N.A. Al-Rawashdeh, K.S. Al-Sadeh, M.B. Al-Bitar. Physicochemical study on microencapsulation of hydroxypropyl-beta-cyclodextrin in dermal preparations. Drug Development and Industrial Pharmacy 36 (2010) 688-697. https://doi.org/10.3109/03639040903449738
[42] J. Karlsson, P. Artursson. A method for the determination of cellular permeability coefficients and aqueous boundary layer thickness in monolayers of intestinal epithelial ( Caco-2) cells grown in permeable filter chambers. International Journal of Pharmaceutics 71 (1991) 55-64. https://doi.org/https://doi.org/10.1016/0378-5173(91)90067-X
[43] A. Walter, J. Gutknecht. Monocarboxylic acid permeation through lipid bilayer membranes. The Journal of Membrane Biology 77 (1984) 255-264. https://doi.org/10.1007/BF01870573
[44] J. Gutknecht, M.A. Bisson, F.C. Tosteson. Diffusion of carbon dioxide through lipid bilayer membranes: effects of carbonic anhydrase, bicarbonate, and unstirred layers. Journal of General Physiology 69 (1977) 779-794. https://doi.org/10.1085/jgp.69.6.779
[45] J. Gutknecht, D.C. Tosteson. Diffusion of weak acids across lipid bilayer membranes: effects of chemical reactions in the unstirred layers. Science 182 (1973) 1258-1261. https://doi.org/10.1126/science.182.4118.1258
[46] A. Dahan, J.M. Miller, A. Hoffman, G.E. Amidon, G.L. Amidon. The Solubility–Permeability Interplay in Using Cyclodextrins as Pharmaceutical Solubilizers: Mechanistic Modeling and Application to Progesterone. Journal of Pharmaceutical Sciences 99 (2010) 2739-2749. https://doi.org/10.1002/jps.22033
[47] E. Baka, J.E. Comer, K. Takács-Novák. Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiazide as model compound. Journal of Pharmaceutical and Biomedical Analysis 46 (2008) 335-341. https://doi.org/10.1016/j.jpba.2007.10.030
[48] A. Avdeef, E. Fuguet, A. Llinàs, C. Ràfols, E. Bosch, G. Völgyi, T. Verbić, E. Boldyreva, K. Takács-Novák. Equilibrium solubility measurement of ionizable drugs –consensus recommendations for improving data quality. ADMET and DMPK 4 (2016). https://doi.org/10.5599/admet.4.2.292
[49] Mettler-Toledo STARe Evaluation Software. https://www.mt.com/us/en/home/library/software-downloads/lab-analytical-instruments/STARe_Eval_SW.html (accessed 24 June 2025)
[50] PerkinElmer Inc. Spectrum Software v5 0.1, https://shop.perkinelmer.com/product/L6100117 (accessed 24 June 2025)
[51] Á. Buvári, L. Barcza. β-cyclodextrin complexes of different type with inorganic compounds. Inorganica Chimica Acta 33 (1979) L179-L180. https://doi.org/10.1016/S0020-1693(00)89441-4
[52] K. Sugano. Aqueous boundary layers related to oral absorption of a drug: from dissolution of a drug to carrier mediated transport and intestinal wall metabolism. Molecular Pharmaceutics 7 (2010) 1362-1373. https://doi.org/10.1021/mp1001119
[53] T. Higuchi, K.A. Connors, Phase Solubility Techniques, in Advanced Analytical Chemistry of Instrumentation,1965, p. 117-212. https://doi.org/10.1016/B978-0-08-012210-6.50004-1
[54] . Loftsson, P. Jarho, M. Másson, T. Järvinen. Cyclodextrins in drug delivery. Expert Opinion on Drug Delivery 2 (2005) 335-351. https://doi.org/10.1517/17425247.2.1.335
[55] M.E. Brewster, T. Loftsson. Cyclodextrins as pharmaceutical solubilizers. Advanced Drug Delivery Reviews 59 (2007) 645-666. https://doi.org/10.1016/j.addr.2007.05.012
[56] A.R. Sá Couto, A. Ryzhakov, T. Loftsson. 2-Hydroxypropyl-β-Cyclodextrin Aggregates: Identification and Development of Analytical Techniques. Materials 11 (2018) 1971. https://doi.org/10.3390/ma11101971
[57] Patient Information of Sporanox (Itraconazole) Capsules. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/020083s062lbl.pdf (accessed 24 June 2025)
[58] A. Dahan, J.M. Miller, A. Hoffman, G.E. Amidon, G.L. Amidon. The solubility-permeability interplay in using cyclodextrins as pharmaceutical solubilizers: mechanistic modeling and application to progesterone. Journal of Pharmaceutical Sciences 99 (2010) 2739-2749. https://doi.org/10.1002/jps.22033
[59] J.M. Miller, A. Beig, B.J. Krieg, R.A. Carr, T.B. Borchardt, G.E. Amidon, G.L. Amidon, A. Dahan. The solubility-permeability interplay: mechanistic modeling and predictive application of the impact of micellar solubilization on intestinal permeation. Molecular Pharmaceutics 8 (2011) 1848-1856. https://doi.org/10.1021/mp200181v
[60] K. Sugano. Estimation of effective intestinal membrane permeability considering bile micelle solubilisation. International Journal of Pharmaceutics 368 (2009) 116-122. https://doi.org/https://doi.org/10.1016/j.ijpharm.2008.10.001
[61] K. Sugano, M. Kataoka, C. Mathews Cda, S. Yamashita. Prediction of food effect by bile micelles on oral drug absorption considering free fraction in intestinal fluid. European Journal of Pharmaceutical Sciences 40 (2010) 118-124. https://doi.org/10.1016/j.ejps.2010.03.011
[62] E. Borbás, B. Sinkó, O. Tsinman, K. Tsinman, É. Kiserdei, B. Démuth, A. Balogh, B. Bodák, A. Domokos, G. Dargó, G.T. Balogh, Z.K. Nagy. Investigation and Mathematical Description of the Real Driving Force of Passive Transport of Drug Molecules from Supersaturated Solutions. Molecular Pharmaceutics 13 (2016) 3816-3826. https://doi.org/10.1021/acs.molpharmaceut.6b00613
Comments (0)