Leveraging machine learning models in evaluating ADMET properties for drug discovery and development

[1] N. Berdigaliyev, M. Aljofan. An overview of drug discovery and development. Future Medicinal Chemistry 12 (2020) 939-947. https://doi.org/10.4155/fmc-2019-0307

[2] Z. Pei. Computer-aided drug discovery: From traditional simulation methods to language models and quantum computing. Cell Reports Physical Science 5 (2024) 11-21. https://doi.org/10.1016/j.xcrp.2024.102334

[3] J. Vamathevan, D. Clark, P. Czodrowski, I. Dunham, E. Ferran, G. Lee, B. Li, A. Madabhushi, P. Shah, M. Spitzer, S. Zhao. Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery 18 (2019) 463-477. https://doi.org/10.1038/s41573-019-0024-5

[4] S. Dara, S. Dhamercherla, S.S. Jadav, C.M. Babu, M.J. Ahsan. Machine Learning in Drug Discovery: A Review. Artificial Intelligence Review 55 (2022) 1947-1999. https://doi.org/10.1007/s10462-021-10058-4

[5] G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, A. Lu, X. Chen, T. Hou, D. Cao. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research 49 (2021) W5-W14. https://doi.org/10.1093/nar/gkab255

[6] J.A. Pradeepkiran, S.B. Sainath. Brucella Melitensis: Identification and Characterization of Potential Drug Targets, Elsevier, Texas, US, (2021) 133-176. https://doi.org/10.1016/C2020-0-03079-3

[7] D. Sun, W. Gao, H. Hu, S. Zhou. Why 90% of clinical drug development fails and how to improve it? Acta Pharmaceutica Sinica B 12 (2022) 3049-3062. https://doi.org/10.1016/j.apsb.2022.02.002

[8] J. Jiménez-Luna, F. Grisoni, N. Weskamp, G. Schneider. Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opinion on Drug Discovery 16 (2021) 949-959. https://doi.org/10.1080/17460441.2021.1909567

[9] S. Harrer, P. Shah, B. Antony, J. Hu. Artificial Intelligence for Clinical Trial Design. Trends in Pharmacological Sciences 40 (2019) 577-591. https://doi.org/10.1016/j.tips.2019.05.005

[10] M.J. Wildey, A. Haunso, M. Tudor, M. Webb, J.H. Connick. High-Throughput Screening. Annual Reports in Medicinal Chemistry 50 (2017) 149-195. https://doi.org/10.1016/bs.armc.2017.08.004

[11] S. Nag, A.T.K. Baidya, A. Mandal, A.T. Mathew, B. Das, B. Devi, R. Kumar. Deep learning tools for advancing drug discovery and development. 3 Biotech 12 (2022) 110. https://doi.org/10.1007/s13205-022-03165-8

[12] C.R. Hooijmans, R.B.M. De Vries, M. Ritskes-Hoitinga, M.M. Rovers, M.M. Leeflang, J. IntHout, K.E. Wever, L. Hooft, H. de Beer, T. Kuijpers, M.R. Macleod, E.S. Sena, G. ter Riet, R.L. Morgan, K.A. Thayer, A.A. Rooney, G.H. Guyatt, H.J. Schünemann, M.W. Langendam. Facilitating healthcare decisions by assessing the certainty in the evidence from preclinical animal studies. PLoS ONE 13(1) (2018) e0187271. https://doi.org/10.1371/journal.pone.0187271

[13] N. Singh, P. Vayer, S. Tanwar, J.-L. Poyet, K. Tsaioun, B.O. Villoutreix. Drug discovery and development: introduction to the general public and patient groups. Frontiers in Drug Discovery 3 (2023) 1201419. https://doi.org/10.3389/fddsv.2023.1201419

[14] F. Wu, Y. Zhou, L. Li, X. Shen, G. Chen, X. Wang, X. Liang, M. Tan, Z. Huang. Computational Approaches in Preclinical Studies on Drug Discovery and Development. Frontiers in Chemistry 8 (2020) 726. https://doi.org/10.3389/fchem.2020.00726

[15] D. Wang, W. Liu, Z. Shen, L. Jiang, J. Wang, S. Li, H. Li. Deep learning based drug metabolites prediction. Frontiers in Pharmacology 10 (2020) 1586. https://doi.org/10.3389/fphar.2019.01586

[16] Y. Wu, G. Wang. Machine learning based toxicity prediction: From chemical structural description to transcriptome analysis. International Journal of Molecular Sciences 19(8) (2018) 2358. https://doi.org/10.3390/ijms19082358

[17] K. Maharana, S. Mondal, B. Nemade. Data pre-processing and data augmentation techniques. Global Transitions Proceedings 3 (2022) 91-99. https://doi.org/10.1016/j.gltp.2022.04.020

[18] K. Bhayani, D. Tanna, V. Maan, Dhiraj, S. Kumar. An exploration of the impact of Feature quality versus Feature quantity on the performance of a machine learning model. in: IEEE Int. Conf. Contemp. Comput. Commun., IEEE, Bangalore, India, (2023): pp.1-5 https://doi.org/10.1109/InC457730.2023.10262824

[19] S.C. Rathi, S. Misra, R. Colomo-Palacios, R. Adarsh, L.B.M. Neti, L. Kumar. Empirical evaluation of the performance of data sampling and feature selection techniques for software fault prediction. Expert Systems with Applications 223 (2023) 119806. https://doi.org/10.1016/j.eswa.2023.119806

[20] F. Caloni, I. De Angelis, T. Hartung. Replacement of animal testing by integrated approaches to testing and assessment (IATA): a call for in vivitrosi. Archives of Toxicology 96 (2022) 1935-1950. https://doi.org/10.1007/s00204-022-03299-x

[21] J. Grzegorzewski, J. Brandhorst, K. Green, D. Eleftheriadou, Y. Duport, F. Barthorscht, A. Köller, D.Y.J. Ke, S. De Angelis, M. König. PK-DB: Pharmacokinetics database for individualized and stratified computational modeling. Nucleic Acids Research 49 (2021) D1358-D1364. https://doi.org/10.1093/nar/gkaa990

[22] E. Pihan, L. Colliandre, J.F. Guichou, D. Douguet. E-Drug3D: 3D structure collections dedicated to drug repurposing and fragment-based drug design. Bioinformatics 28 (2012) 1540-1541. https://doi.org/10.1093/bioinformatics/bts186

[23] D.S. Wishart, Y.D. Feunang, A.C. Guo, E.J. Lo, A. Marcu, J.R. Grant, T. Sajed, D. Johnson, C. Li, Z. Sayeeda, N. Assempour, I. Iynkkaran, Y. Liu, A. MacIejewski, N. Gale, A. Wilson, L. Chin, R. Cummings, Di. Le, A. Pon, C. Knox, M. Wilson. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (2018) D1074-D1082. https://doi.org/10.1093/nar/gkx1037

[24] A. Gaulton, L.J. Bellis, A.P. Bento, J. Chambers, M. Davies, A. Hersey, Y. Light, S. McGlinchey, D. Michalovich, B. Al-Lazikani, J.P. Overington. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Research 40 (2012) D1100-D1107. https://doi.org/10.1093/nar/gkr777

[25] Y. Zhou, Y. Zhang, D. Zhao, X. Yu, X. Shen, Y. Zhou, S. Wang, Y. Qiu, Y. Chen, F. Zhu. T TD: Ther apeutic Targ et D atabase describing tar get drugg ability inf ormation. Nucleic Acids Research 52 (2024) D1465-D1477. https://doi.org/10.1093/nar/gkad751

[26] R.R. Sayre, J.F. Wambaugh, C.M. Grulke. Database of pharmacokinetic time-series data and parameters for 144 environmental chemicals. Scientific Data 7 (2020) 122. https://doi.org/10.1038/s41597-020-0455-1

[27] S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B.A. Shoemaker, P.A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E.E. Bolton. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research 47 (2019) D1102-D1109. https://doi.org/10.1093/nar/gky1033

[28] T. Sterling, J.J. Irwin. ZINC 15 - Ligand Discovery for Everyone. Journal of Chemical Information and Modeling 55 (2015) 2324-2337. https://doi.org/10.1021/acs.jcim.5b00559

[29] S. Preissner, K. Kroll, M. Dunkel, C. Senger, G. Goldsobel, D. Kuzman, S. Guenther, R. Winnenburg, M. Schroeder, R. Preissner. SuperCYP: A comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Research 38 (2009) D237-D243. https://doi.org/10.1093/nar/gkp970

[30] Y. Xu, X. Liu, W. Xia, J. Ge, C.W. Ju, H. Zhang, J.Z.H. Zhang. ChemXTree: A Feature-Enhanced Graph Neural Network-Neural Decision Tree Framework for ADMET Prediction. Journal of Chemical Information and Modeling 64(22) (2024) 8440-8452. https://doi.org/10.1021/acs.jcim.4c01186

[31] E.N. Feinberg, E. Joshi, V.S. Pande, A.C. Cheng. Improvement in ADMET Prediction with Multitask Deep Featurization. Journal of Medicinal Chemistry 63 (2020) 8835-8848. https://doi.org/10.1021/acs.jmedchem.9b02187

[32] M. Malekipirbazari, V. Aksakalli, W. Shafqat, A. Eberhard. Performance comparison of feature selection and extraction methods with random instance selection. Expert Systems with Applications 179 (2021) 115072. https://doi.org/10.1016/j.eswa.2021.115072

[33] B. Venkatesh, J. Anuradha. A review of Feature Selection and its methods. Cybernetics and Information Technologies 19 (2019) 3-26. https://doi.org/10.2478/CAIT-2019-0001

[34] N. Sánchez-Maroño, A. Alonso-Betanzos, M. Tombilla-Sanromán. Filter methods for feature selection - A comparative study. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4881 LNCS (2007) 178-187. https://doi.org/10.1007/978-3-540-77226-2_19

[35] S.S.S.J. Ahmed, V. Ramakrishnan. Systems biological approach of molecular descriptors connectivity: Optimal descriptors for oral bioavailability prediction. PLoS ONE 7 (2012) e40654. https://doi.org/10.1371/journal.pone.0040654

[36] I. Tsamardinos, G. Borboudakis, P. Katsogridakis, P. Pratikakis, V. Christophides. A greedy feature selection algorithm for Big Data of high dimensionality. Machine Learning 108 (2019) 149-202. https://doi.org/10.1007/s10994-018-5748-7

[37] H. Liu, M. Zhou, Q. Liu. An embedded feature selection method for imbalanced data classification. IEEE/CAA Journal of Automatica Sinica 6 (2019) 703-715. https://doi.org/10.1109/JAS.2019.1911447

[38] H.H. Hsu, C.W. Hsieh, M. Da Lu. Hybrid feature selection by combining filters and wrappers. Expert Systems with Applications 38 (2011) 8144-8150. https://doi.org/10.1016/j.eswa.2010.12.156

[39] P. Carracedo-Reboredo, J. Liñares-Blanco, N. Rodríguez-Fernández, F. Cedrón, F.J. Novoa, A. Carballal, V. Maojo, A. Pazos, C. Fernandez-Lozano. A review on machine learning approaches and trends in drug discovery. Computational and Structural Biotechnology Journal 19 (2021) 4538-4558. https://doi.org/10.1016/j.csbj.2021.08.011

[40] F. Grisoni, D. Ballabio, R. Todeschini, V. Consonni. Molecular descriptors for structure-activity applications: A hands-on approach. Methods in Molecular Biology 1800 (2018) 3-53. https://doi.org/10.1007/978-1-4939-7899-1_1

[41] A. Mauri, V. Consonni, R. Todeschini. Molecular descriptors. Handbook of Computational Chemistry (2017) 2065-2093. https://doi.org/10.1007/978-3-319-27282-5_51

[42] T. Mueller, A.G. Kusne, R. Ramprasad. Machine Learning in Materials Science: Recent Progress and Emerging Applications. Reviews in Computational Chemistry 29 (2016) 186-273. https://doi.org/10.1002/9781119148739.ch4

[43] R. Todeschini, V. Consonni. Molecular Descriptors for Chemoinformatics. Molecular Descriptors for Chemoinformatics 2 (2010) 1-252. https://doi.org/10.1002/9783527628766

[44] A.I. Odugbemi, C. Nyirenda, A. Christoffels, S.A. Egieyeh. Artificial intelligence in antidiabetic drug discovery: The advances in QSAR and the prediction of α-glucosidase inhibitors. Computational and Structural Biotechnology Journal 23 (2024) 2964-2977. https://doi.org/10.1016/j.csbj.2024.07.003

[45] J. Deng, Z. Yang, H. Wang, I. Ojima, D. Samaras, F. Wang. A systematic study of key elements underlying molecular property prediction. Nature Communications 14 (2023) 6395. https://doi.org/10.1038/s41467-023-41948-6

[46] B. Chandrasekaran, S.N. Abed, O. Al-Attraqchi, K. Kuche, R.K. Tekade. Computer-Aided Prediction of Pharmacokinetic (ADMET) Properties. Dosage Form Design Parameters 2 (2018) 731-755. https://doi.org/10.1016/B978-0-12-814421-3.00021-X

[47] D. Wan, J. Yang, T. Zhang, Y. Xiong. A novel method to identify influential nodes based on hybrid topology structure. Physical Communication 58 (2023) 102046. https://doi.org/10.1016/j.phycom.2023.102046

[48] D.C. Kombo, K. Tallapragada, R. Jain, J. Chewning, A.A. Mazurov, J.D. Speake, T.A. Hauser, S. Toler. 3D molecular descriptors important for clinical success. Journal of Chemical Information and Modeling 53 (2013) 327-342. https://doi.org/10.1021/ci300445e

[49] D. Fourches, J. Ash. 4D- quantitative structure-activity relationship modeling: making a comeback. Expert Opinion on Drug Discovery 14 (2019) 1227-1235. https://doi.org/10.1080/17460441.2019.1664467

[50] E. Jung, J. Kim, M. Kim, D.H. Jung, H. Rhee, J.M. Shin, K. Choi, S.K. Kang, M.K. Kim, C.H. Yun, Y.J. Choi, S.H. Choi. Artificial neural network models for prediction of intestinal permeability of oligopeptides. BMC Bioinformatics 8 (2007) 245. https://doi.org/10.1186/1471-2105-8-245

[51] R. Kumar, A. Sharma, M.H. Siddiqui, R.K. Tiwari. Prediction of Human Intestinal Absorption of Compounds Using Artificial Intelligence Techniques. Current Drug Discovery Technologies 14 (2017) 244 - 254. https://doi.org/10.2174/1570163814666170404160911

[52] V. Acuña-Guzman, M.E. Montoya-Alfaro, L.P. Negrón-Ballarte, C. Solis-Calero. A Machine Learning Approach for Predicting Caco-2 Cell Permeability in Natural Products from the Biodiversity in Peru. Pharmaceuticals 17(6) (2024) 750. https://doi.org/10.3390/ph17060750

[53] P. Stenberg, U. Norinder, K. Luthman, P. Artursson. Experimental and computational screening models for the prediction of intestinal drug absorption. Journal of Medicinal Chemistry 44 (2001) 1927-1937. https://doi.org/10.1021/jm001101a

[54] T. Hou, J. Wang, W. Zhang, X. Xu. ADME evaluation in drug discovery. 7. prediction of oral absorption by correlation and classification. Journal of Chemical Information and Modeling 47 (2007) 208-218. https://doi.org/10.1021/ci600343x

[55] E. Deconinck, H. Ates, N. Callebaut, E. Van Gyseghem, Y. Vander Heyden. Evaluation of chromatographic descriptors for the prediction of gastro-intestinal absorption of drugs. Journal of Chromatography A 1138 (2007) 190-202. https://doi.org/10.1016/j.chroma.2006.10.068

[56] A. Talevi, M. Goodarzi, E. V. Ortiz, P.R. Duchowicz, C.L. Bellera, G. Pesce, E.A. Castro, L.E. Bruno-Blanch. Prediction of drug intestinal absorption by new linear and non-linear QSPR. European Journal of Medicinal Chemistry 46 (2011) 218-228. https://doi.org/10.1016/j.ejmech.2010.11.005

[57] A. Yan, Z. Wang, Z. Cai. Prediction of human intestinal absorption by GA feature selection and support vector machine regression. International Journal of Molecular Sciences 9 (2008) 1961-1976. https://doi.org/10.3390/ijms9101961

[58] J. Shen, F. Cheng, Y. Xu, W. Li, Y. Tang. Estimation of ADME properties with substructure pattern recognition. Journal of Chemical Information and Modeling 50 (2010) 1034-1041. https://doi.org/10.1021/ci100104j

[59] R. Bei, J. Thomas, S. Kapur, M. Woldeyes, A. Rauk, J. Robarge, J. Feng, K. Abbou Oucherif. Predicting the clinical subcutaneous absorption rate constant of monoclonal antibodies using only the primary sequence: a machine learning approach. MAbs 16 (2024) 2352887. https://doi.org/10.1080/19420862.2024.2352887

[60] Y. Kamiya, K. Handa, T. Miura, J. Ohori, A. Kato, M. Shimizu, M. Kitajima, H. Yamazaki. Machine Learning Prediction of the Three Main Input Parameters of a Simplified Physiologically Based Pharmacokinetic Model Subsequently Used to Generate Time-Dependent Plasma Concentration Data in Humans after Oral Doses of 212 Disparate Chemicals. Biological and Pharmaceutical Bulletin 45 (2022) 124-128. https://doi.org/10.1248/bpb.b21-00769

[61] V.D. Karalis. Machine Learning in Bioequivalence: Towards Identifying an Appropriate Measure of Absorption Rate. Applied Sciences (Switzerland) 13(1) (2023) 418. https://doi.org/10.3390/app13010418

[62] K. Kumar, V. Chupakhin, A. Vos, D. Morrison, D. Rassokhin, M.J. Dellwo, K. McCormick, E. Paternoster, H. Ceulemans, R.L. Desjarlais. Development and implementation of an enterprise-wide predictive model for early absorption, distribution, metabolism and excretion properties. Future Medicinal Chemistry 13 (2021) 1639-1654. https://doi.org/10.4155/fmc-2021-0138

[63] U. Fagerholm, S. Hellberg, O. Spjuth. Article advances in predictions of oral bioavailability of candidate drugs in man with new machine learning methodology. Molecules 26(9) (2021) 2572. https://doi.org/10.3390/molecules26092572

[64] H. Bennett-Lenane, B.T. Griffin, J.P. O’Shea. Machine learning methods for prediction of food effects on bioavailability: A comparison of support vector machines and artificial neural networks. European Journal of Pharmaceutical Sciences 168 (2022) 106018. https://doi.org/10.1016/j.ejps.2021.106018

[65] S.S.S. Ng, Y. Lu. Evaluating the Use of Graph Neural Networks and Transfer Learning for Oral Bioavailability Prediction. Journal of Chemical Information and Modeling 63 (2023) 5035-5044. https://doi.org/10.1021/acs.jcim.3c00554

[66] K. Holt, S. Nagar, K. Korzekwa. Methods to Predict Volume of Distribution. Current Pharmacology Reports 5 (2019) 391-399. https://doi.org/10.1007/s40495-019-00186-5

[67] X. Liu, B.J. Smith, C. Chen, E. Callegari, S.L. Becker, X. Chen, J. Cianfrogna, A.C. Doran, S.D. Doran, J.P. Gibbs, N. Hosea, J. Liu, F.R. Nelson, M.A. Szewc, J. Van Deusen. Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: An experimental analysis of the role of blood-brain barrier permeability, plasma protein binding, and brain tissue binding. Journal of Pharmacology and Experimental Therapeutics 313 (2005) 1254-1262. https://doi.org/10.1124/jpet.104.079319

[68] Q.R. Smith, R. Samala. In situ and in vivo animal models. AAPS Advances in the Pharmaceutical Sciences Series 10 (2014) 199-211. https://doi.org/10.1007/978-1-4614-9105-7_7

[69] N.N. Wang, C. Huang, J. Dong, Z.J. Yao, M.F. Zhu, Z.K. Deng, B. Lv, A.P. Lu, A.F. Chen, D.S. Cao. Predicting human intestinal absorption with modified random forest approach: a comprehensive evaluation of molecular representation, unbalanced data, and applicability domain issues. RSC Advances 7 (2017) 19007-19018. https://doi.org/10.1039/C6RA28442F

[70] E. V. Radchenko, A.S. Dyabina, V.A. Palyulin. Towards Deep Neural Network Models for the Prediction of the Blood-Brain Barrier Permeability for Diverse Organic Compounds. Molecules 25(24) (2020) 5901. https://doi.org/10.3390/MOLECULES25245901

[71] V. Antontsev, A. Jagarapu, Y. Bundey, H. Hou, M. Khotimchenko, J. Walsh, J. Varshney. A hybrid modeling approach for assessing mechanistic models of small molecule partitioning in vivo using a machine learning-integrated modeling platform. Scientific Reports 11 (2021) 11143. https://doi.org/10.1038/s41598-021-90637-1

[72] Y. Yuan, S. Chang, Z. Zhang, Z. Li, S. Li, P. Xie, W.P. Yau, H. Lin, W. Cai, Y. Zhang, X. Xiang. A novel strategy for prediction of human plasma protein binding using machine learning techniques. Chemometrics and Intelligent Laboratory Systems 199 (2020) 103962. https://doi.org/10.1016/j.chemolab.2020.103962

[73] A. Khaouane, S. Ferhat, S. Hanini. A Novel Methodology for Human Plasma Protein Binding: Prediction, Validation, and Applicability Domain. Pharmaceutical and Biomedical Research 8 (2022) 311-322. https://doi.org/10.32598/pbr.8.4.1086.1

[74] I.F. Martins, A.L. Teixeira, L. Pinheiro, A.O. Falcao. A Bayesian approach to in Silico blood-brain barrier penetration modeling. Journal of Chemical Information and Modeling 52 (2012) 1686-1697. https://doi.org/10.1021/ci300124c

[75] H. Golmohammadi, Z. Dashtbozorgi, W.E. Acree. Quantitative structure-activity relationship prediction of blood-to-brain partitioning behavior using support vector machine. European Journal of Pharmaceutical Sciences 47 (2012) 421-429. https://doi.org/10.1016/j.ejps.2012.06.021

[76] H. Iwata, T. Matsuo, H. Mamada, T. Motomura, M. Matsushita, T. Fujiwara, K. Maeda, K. Handa. Predicting Total Drug Clearance and Volumes of Distribution Using the Machine Learning-Mediated Multimodal Method through the Imputation of Various Nonclinical Data. Journal of Chemical Information and Modeling 62 (2022) 4057-4065. https://doi.org/10.1021/acs.jcim.2c00318

[77] N. Parrott, N. Manevski, A. Olivares-Morales. Can We Predict Clinical Pharmacokinetics of Highly Lipophilic Compounds by Integration of Machine Learning or in Vitro Data into Physiologically Based Models? A Feasibility Study Based on 12 Development Compounds. Molecular Pharmaceutics 19 (2022) 3858-3868. https://doi.org/10.1021/acs.molpharmaceut.2c00350

[78] V. Mulpuru, N. Mishra. In Silico Prediction of Fraction Unbound in Human Plasma from Chemical Fingerprint Using Automated Machine Learning. ACS Omega 6 (2021) 6791-6797. https://doi.org/10.1021/acsomega.0c05846

[79] H. Cao, J. Peng, Z. Zhou, Z. Yang, L. Wang, Y. Sun, Y. Wang, Y. Liang. Investigation of the Binding Fraction of PFAS in Human Plasma and Underlying Mechanisms Based on Machine Learning and Molecular Dynamics Simulation. Environmental Science and Technology 57 (2023) 17762-17773. https://doi.org/10.1021/acs.est.2c04400

[80] M. Riedl, S. Mukherjee, M. Gauthier. Descriptor-Free Deep Learning QSAR Model for the Fraction Unbound in Human Plasma. Molecular Pharmaceutics 20 (2023) 4984-4993. https://doi.org/10.1021/acs.molpharmaceut.3c00129

[81] F. Hammann, H. Gutmann, U. Baumann, C. Helma, J. Drewe. Classification of cytochrome P450 activities using machine learning methods. Molecular Pharmaceutics 6 (2009) 1920-1926. https://doi.org/10.1021/mp900217x

[82] T. Fox, J. Kriegl. Machine Learning Techniques for In Silico Modeling of Drug Metabolism. Current Topics in Medicinal Chemistry 6 (2006) 1579-1591. https://doi.org/10.2174/156802606778108915

[83] H.X. Liu, X.J. Yao, R.S. Zhang, M.C. Liu, Z.D. Hu, B.T. Fan. Prediction of the tissue/blood partition coefficients of organic compounds based on the molecular structure using least-squares support vector machines. Journal of Computer-Aided Molecular Design 19 (2005) 499-508. https://doi.org/10.1007/s10822-005-9003-5

[84] J.Y. Ryu, J.H. Lee, B.H. Lee, J.S. Song, S. Ahn, K.S. Oh. PredMS: a random forest model for predicting metabolic stability of drug candidates in human liver microsomes. Bioinformatics 38 (2022) 364-368. https://doi.org/10.1093/bioinformatics/btab547

[85] M. Baranwal, A. Magner, P. Elvati, J. Saldinger, A. Violi, A. Violi, A.O. Hero. A deep learning architecture for metabolic pathway prediction. Bioinformatics 36 (2020) 2547-2553. https://doi.org/10.1093/bioinformatics/btz954

[86] N.N. Wang, X.G. Wang, G.L. Xiong, Z.Y. Yang, A.P. Lu, X. Chen, S. Liu, T.J. Hou, D.S. Cao. Machine learning to predict metabolic drug interactions related to cytochrome P450 isozymes. Journal of Cheminformatics 14 (2022) 23. https://doi.org/10.1186/s13321-022-00602-x

[87] H. Mamada, Y. Nomura, Y. Uesawa. Prediction Model of Clearance by a Novel Quantitative Structure-Activity Relationship Approach, Combination DeepSnap-Deep Learning and Conventional Machine Learning. ACS Omega 6 (2021) 23570-23577. https://doi.org/10.1021/acsomega.1c03689

[88] C.E. Keefer, G. Chang, L. Di, N.A. Woody, D.A. Tess, S.M. Osgood, B. Kapinos, J. Racich, A.A. Carlo, A. Balesano, N. Ferguson, C. Orozco, L. Zueva, L. Luo. The Comparison of Machine Learning and Mechanistic In Vitro-In Vivo Extrapolation Models for the Prediction of Human Intrinsic Clearance. Molecular Pharmaceutics 20 (2023) 5616-5630. https://doi.org/10.1021/acs.molpharmaceut.3c00502

[89] R. Rodríguez-Pérez, M. Trunzer, N. Schneider, B. Faller, G. Gerebtzoff. Multispecies Machine Learning Predictions of in Vitro Intrinsic Clearance with Uncertainty Quantification Analyses. Molecular Pharmaceutics 20 (2023) 383-394. https://doi.org/10.1021/acs.molpharmaceut.2c00680

[90] A. Andrews-Morger, M. Reutlinger, N. Parrott, A. Olivares-Morales. A Machine Learning Framework to Improve Rat Clearance Predictions and Inform Physiologically Based Pharmacokinetic Modeling. Molecular Pharmaceutics 20 (2023) 5052-5065. https://doi.org/10.1021/acs.molpharmaceut.3c00374

[91] T.T. Van Tran, H. Tayara, K.T. Chong. Artificial Intelligence in Drug Metabolism and Excretion Prediction: Recent Advances, Challenges, and Future Perspectives. Pharmaceutics 15(4) (2023) 1260. https://doi.org/10.3390/pharmaceutics15041260

[92] R. Watanabe, R. Ohashi, T. Esaki, H. Kawashima, Y. Natsume-Kitatani, C. Nagao, K. Mizuguchi. Development of an in silico prediction system of human renal excretion and clearance from chemical structure information incorporating fraction unbound in plasma as a descriptor. Scientific Reports 9 (2019) 18782. https://doi.org/10.1038/s41598-019-55325-1

[93] D. Bassani, N.J. Parrott, N. Manevski, J.D. Zhang. Another string to your bow: machine learning prediction of the pharmacokinetic properties of small molecules. Expert Opinion on Drug Discovery 19 (2024) 683-698. https://doi.org/10.1080/17460441.2024.2348157

[94] S. Seal, M.-A. Trapotsi, V. Subramanian, O. Spjuth, N. Greene, A. Bender. PKSmart: An Open-Source Computational Model to Predict in vivo Pharmacokinetics of Small Molecules. BioRxiv (2024). https://doi.org/10.1101/2024.02.02.578658

[95] J. Fan, S. Shi, H. Xiang, L. Fu, Y. Duan, D. Cao, H. Lu. Predicting Elimination of Small-Molecule Drug Half-Life in Pharmacokinetics Using Ensemble and Consensus Machine Learning Methods. Journal of Chemical Information and Modeling 64 (2024) 3080-3092. https://doi.org/10.1021/acs.jcim.3c02030

[96] Y.W. Hsiao, U. Fagerholm, U. Norinder. In silico categorization of in vivo intrinsic clearance using machine learning. Molecular Pharmaceutics 10 (2013) 1318-1321. https://doi.org/10.1021/mp300484r

[97] H. Iwata, T. Matsuo, H. Mamada, T. Motomura, M. Matsushita, T. Fujiwara, M. Kazuya, K. Handa. Prediction of Total Drug Clearance in Humans Using Animal Data: Proposal of a Multimodal Learning Method Based on Deep Learning. Journal of Pharmaceutical Sciences 110 (2021) 1834-1841. https://doi.org/10.1016/j.xphs.2021.01.020

[98] Y. Kosugi, N. Hosea. Direct Comparison of Total Clearance Prediction: Computational Machine Learning Model versus Bottom-Up Approach Using in Vitro Assay. Molecular Pharmaceutics 17 (2020) 2299-2309. https://doi.org/10.1021/acs.molpharmaceut.9b01294

[99] P. Paixão, L.F. Gouveia, J.A.G. Morais. Prediction of the in vitro intrinsic clearance determined in suspensions of human hepatocytes by using artificial neural networks. European Journal of Pharmaceutical Sciences 39 (2010) 310-321. https://doi.org/10.1016/j.ejps.2009.12.007

[100] S.W. Paine, P. Barton, J. Bird, R. Denton, K. Menochet, A. Smith, N.P. Tomkinson, K.K. Chohan. A rapid computational filter for predicting the rate of human renal clearance. Journal of Molecular Graphics and Modelling 29 (2010) 529-537. https://doi.org/10.1016/j.jmgm.2010.10.003

[101] Y. Wang, H. Liu, Y. Fan, X. Chen, Y. Yang, L. Zhu, J. Zhao, Y. Chen, Y. Zhang. In Silico Prediction of Human Intravenous Pharmacokinetic Parameters with Improved Accuracy. Journal of Chemical Information and Modeling 59 (2019) 3968-3980. https://doi.org/10.1021/acs.jcim.9b00300

[102] W. Guo, J. Liu, F. Dong, M. Song, Z. Li, M.K.H. Khan, T.A. Patterson, H. Hong. Review of machine learning and deep learning models for toxicity prediction. Experimental Biology and Medicine 248 (2023) 1952-1973. https://doi.org/10.1177/15353702231209421

[103] P. Rana, S. Kogut, X. Wen, F. Akhlaghi, M.D. Aleo. Most Influential Physicochemical and in Vitro Assay Descriptors for Hepatotoxicity and Nephrotoxicity Prediction. Chemical Research in Toxicology 33 (2020) 1780-1790. https://doi.org/10.1021/acs.chemrestox.0c00040

[104] M.Z.I. Khan, J.N. Ren, C. Cao, H.Y.X. Ye, H. Wang, Y.M. Guo, J.R. Yang, J.Z. Chen. Comprehensive hepatotoxicity prediction: ensemble model integrating machine learning and deep learning. Frontiers in Pharmacology 15 (2024) 1441587. https://doi.org/10.3389/fphar.2024.1441587

[105] R. Ancuceanu, M.V. Hovanet, A.I. Anghel, F. Furtunescu, M. Neagu, C. Constantin, M. Dinu. Computational models using multiple machine learning algorithms for predicting drug hepatotoxicity with the dilirank dataset. International Journal of Molecular Sciences 21(6) (2020) 2114. https://doi.org/10.3390/ijms21062114

[106] Y. Lu, L. Liu, D. Lu, Y. Cai, M. Zheng, X. Luo, H. Jiang, K. Chen. Predicting Hepatotoxicity of Drug Metabolites Via an Ensemble Approach Based on Support Vector Machine. Combinatorial Chemistry & High Throughput Screening 20 (2017) 839-849. https://doi.org/10.2174/1386207320666171121113255

[107] L.W. Chiu, Y.E. Ku, F.Y. Chan, W.N. Lie, H.J. Chao, S.Y. Wang, W.C. Shen, H.Y. Chen. Machine learning algorithms to predict colistin-induced nephrotoxicity from electronic health records in patients with multidrug-resistant gram-negative infection. International Journal of Antimicrobial Agents 64 (2024) 107175. https://doi.org/10.1016/j.ijantimicag.2024.107175

[108] J.Y. Ryu, W.D. Jang, J. Jang, K.S. Oh. PredAOT: a computational framework for prediction of acute oral toxicity based on multiple random forest models. BMC Bioinformatics 24 (2023) 66. https://doi.org/10.1186/s12859-023-05176-5

[109] F. Mostafa, V. Howle, M. Chen. Machine Learning to Predict Drug-Induced Liver Injury and Its Validation on Failed Drug Candidates in Development †. Toxics 12(6) (2024) 385. https://doi.org/10.3390/toxics12060385

[110] C. Cai, P. Guo, Y. Zhou, J. Zhou, Q. Wang, F. Zhang, J. Fang, F. Cheng. Deep Learning-Based Prediction of Drug-Induced Cardiotoxicity. Journal of Chemical Information and Modeling 59 (2019) 1073-1084. https://doi.org/10.1021/acs.jcim.8b00769

[111] D. Fan, H. Yang, F. Li, L. Sun, P. Di, W. Li, Y. Tang, G. Liu. In silico prediction of chemical genotoxicity using machine learning methods and structural alerts. Toxicology Research 7 (2018) 211-220. https://doi.org/10.1039/c7tx00259a

[112] N.K. Shinada, N. Koyama, M. Ikemori, T. Nishioka, S. Hitaoka, A. Hakura, S. Asakura, Y. Matsuoka, S.K. Palaniappan. Optimizing machine-learning models for mutagenicity prediction through better feature selection. Mutagenesis 37 (2022) 191-202. https://doi.org/10.1093/mutage/geac010

[113] T. Li, W. Tong, R. Roberts, Z. Liu, S. Thakkar. DeepCarc: Deep Learning-Powered Carcinogenicity Prediction Using Model-Level Representation. Frontiers in Artificial Intelligence 4 (2021) 757780. https://doi.org/10.3389/frai.2021.757780

[114] A. Talebi, A. Bitarafan-Rajabi, A. Alizadeh-asl, P. Seilani, B. Khajetash, G. Hajianfar, M. Tavakoli. Machine learning based radiomics model to predict radiotherapy induced cardiotoxicity in breast cancer. Journal of Applied Clinical Medical Physics 26(4) (2024) e14614. https://doi.org/10.1002/acm2.14614

[115] S. Iftkhar, A.G.C. De Sá, J.P.L. Velloso, R. Aljarf, D.E.V. Pires, D.B. Ascher. CardioToxCSM: A Web Server for Predicting Cardiotoxicity of Small Molecules. Journal of Chemical Information and Modeling 62 (2022) 4827-4836. https://doi.org/10.1021/acs.jcim.2c00822

[116] P. Trairatphisan, L. Dorsheimer, P. Monecke, J. Wenzel, R. James, A. Czich, Y. Dietz-Baum, F. Schmidt. Machine learning enhances genotoxicity assessment using MultiFlow® DNA damage assay. Environmental and Molecular Mutagenesis 66 (2024) 45-57. https://doi.org/10.1002/em.22648

[117] C.N. Cavasotto, V. Scardino. Machine Learning Toxicity Prediction: Latest Advances by Toxicity End Point. ACS Omega 7 (2022) 47536-47546. https://doi.org/10.1021/acsomega.2c05693

[118] X. Ma, R. Wang, Y. Xue, Z. Li, S. Yang, Y. Wei, Y. Chen. Advances in Machine Learning Prediction of Toxicological Properties and Adverse Drug Reactions of Pharmaceutical Agents. Current Drug Safety 3 (2008) 100-114. https://doi.org/10.2174/157488608784529224

[119] N. Madhukar, K. Gayvert, C. Gilvary, O. Elemento. A Machine Learning Approach Predicts Tissue-Specific Drug Adverse Events. BioRxiv (2018). https://doi.org/10.1101/288332

[120] D. Naga, W. Muster, E. Musvasva, G.F. Ecker. Off-targetP ML: an open source machine learning framework for off-target panel safety assessment of small molecules. Journal of Cheminformatics 14 (2022) 27. https://doi.org/10.1186/s13321-022-00603-w

[121] L. Tonoyan, A.G. Siraki. Machine learning in toxicological sciences: opportunities for assessing drug toxicity. Frontiers in Drug Discovery 4 (2024) 1336025. https://doi.org/10.3389/fddsv.2024.1336025

[122] S. Okechukwuyem Ojji. Emerging Technology Integration - Artificial Intelligence (AI) and Machine Learning (ML) for Predictive Analysis for Safety and Toxicity Assessment in Environmental Toxicology. International Journal of Scientific Research and Management (IJSRM) 12 (2024) 1182-1195. https://doi.org/10.18535/ijsrm/v12i05.ec03

[123] V. Blay, X. Li, J. Gerlach, F. Urbina, S. Ekins. Combining DELs and machine learning for toxicology prediction. Drug Discovery Today 27 (2022) 103351. https://doi.org/10.1016/j.drudis.2022.103351

[124] A. Lavecchia. Deep learning in drug discovery: opportunities, challenges and future prospects. Drug Discovery Today 24 (2019) 2017-2032. https://doi.org/10.1016/j.drudis.2019.07.006

[125] H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, T. Blaschke. The rise of deep learning in drug discovery. Drug Discovery Today 23 (2018) 1241-1250. https://doi.org/10.1016/j.drudis.2018.01.039

[126] S. Min, B. Lee, S. Yoon. Deep learning in bioinformatics. Briefings in Bioinformatics 18 (2017) 851-869. https://doi.org/10.1093/bib/bbw068

[127] H. Belyadi, A. Haghighat. Supervised learning. Machine Learning Guide for Oil and Gas Using Python (2021) 169-295. https://doi.org/10.1016/b978-0-12-821929-4.00004-4

[128] I.V.D. Srihith, P.V. Lakshmi, A.D. Donald, T. Aditya, T.A.S. Srinivas, G. Thippanna. A Forest of Possibilities: Decision Trees and Beyond. HARB Publication 6 (2023) 29-37. http://dx.doi.org/10.5281/zenodo.8372196

[129] D.S. Palmer, N.M. O’Boyle, R.C. Glen, J.B.O. Mitchell. Random forest models to predict aqueous solubility. Journal of Chemical Information and Modeling 47 (2007) 150-158. https://doi.org/10.1021/ci060164k

[130] D.S. Cao, Y.N. Yang, J.C. Zhao, J. Yan, S. Liu, Q.N. Hu, Q.S. Xu, Y.Z. Liang. Computer-aided prediction of toxicity with substructure pattern and random forest. Journal of Chemometrics 26 (2012) 7-15. https://doi.org/10.1002/cem.1416

[131] D.S. Cao, Q.N. Hu, Q.S. Xu, Y.N. Yang, J.C. Zhao, H.M. Lu, L.X. Zhang, Y.Z. Liang. In silico classification of human maximum recommended daily dose based on modified random forest and substructure fingerprint. Analytica Chimica Acta 692 (2011) 50-56. https://doi.org/10.1016/j.aca.2011.02.010

[132] Y. Uesawa. Rigorous selection of random forest models for identifying compounds that activate toxicity-related pathways. Frontiers in Environmental Science 4 (2016) 9. https://doi.org/10.3389/fenvs.2016.00009

[133] M.M. Suprijono, H. Sujuti, D. Kurnia, S.B. Widjanarko. Absorption, distribution, metabolism, excretion, and toxicity evaluation of Papua red fruit flavonoids through a computational study. in: IOP Conf. Ser. Earth Environ. Sci., IOP Science, Malang East Java Indonesia, (2020) https://doi.org/10.1088/1755-1315/475/1/012078

[134] M.N. Murty, R. Raghava. Kernel-based SVM. SpringerBriefs in Computer Science 0 (2016) 57-67. https://doi.org/10.1007/978-3-319-41063-0_5

[135] M.W.B. Trotter, S.B. Holden. Support vector machines for ADME property classification. QSAR and Combinatorial Science 22 (2003) 533-548. https://doi.org/10.1002/qsar.200310006

[136] J. Gola, O. Obrezanova, E. Champness, M. Segall. ADMET property prediction: The state of the art and current challenges. QSAR and Combinatorial Science 25 (2006) 1172-1180. https://doi.org/10.1002/qsar.200610093

[137] Y. Shi, K. Yang, Z. Yang, Y. Zhou. Primer on artificial intelligence. Mobile Edge Artificial Intelligence (2022) 7-36. https://doi.org/10.1016/b978-0-12-823817-2.00011-5

[138] D. Gadaleta, F. Pizzo, A. Lombardo, A. Carotti, S.E. Escher, O. Nicolotti, E. Benfenati. A k-NN algorithm for predicting oral sub-chronic toxicity in the rat. Altex 31 (2014) 423-432. https://doi.org/10.14573/altex.1405091

[139] F. Como, E. Carnesecchi, S. Volani, J.L. Dorne, J. Richardson, A. Bassan, M. Pavan, E. Benfenati. Predicting acute contact toxicity of pesticides in honeybees (Apis mellifera) through a k-nearest neighbor model. Chemosphere 166 (2017) 438-444. https://doi.org/10.1016/j.chemosphere.2016.09.092

[140] S. Chavan, R. Friedman, I.A. Nicholls. Acute toxicity-supported chronic toxicity prediction: A k-nearest neighbor coupled read-across strategy. International Journal of Molecular Sciences 16 (2015) 11659-11677. https://doi.org/10.3390/ijms160511659

[141] H. Tian, R. Ketkar, P. Tao. ADMETboost: a web server for accurate ADMET prediction. Journal of Molecular Modeling 28 (2022) 408. https://doi.org/10.1007/s00894-022-05373-8

[142] T. An, Y. Chen, Y. Chen, L. Ma, J. Wang, J. Zhao. A machine learning-based approach to ERα bioactivity and drug ADMET prediction. Frontiers in Genetics 13 (2023) 1087273. https://doi.org/10.3389/fgene.2022.1087273

[143] X. Li, L. Tang, Z. Li, D. Qiu, Z. Yang, B. Li. Prediction of ADMET Properties of Anti-Breast Cancer Compounds Using Three Machine Learning Algorithms. Molecules 28 (2023) 2326. https://doi.org/10.3390/molecules28052326

[144] P.M. Vassiliev, A. V. Golubeva, A.R. Koroleva, M.A. Perfilev, A.N. Kochetkov. In Silico Prediction of Toxicological and Pharmacokinetic Characteristics of Medicinal Compounds. Safety and Risk of Pharmacotherapy 11 (2023) 390-408. https://doi.org/10.30895/2312-7821-2023-11-4-390-408

[145] J. Wenzel, H. Matter, F. Schmidt. Predictive Multitask Deep Neural Network Models for ADME-Tox Properties: Learning from Large Data Sets. Journal of Chemical Information and Modeling 59 (2019) 1253-1268. https://doi.org/10.1021/acs.jcim.8b00785

[146] D.A. Winkler. Neural networks in ADME and toxicity prediction. Drugs of the Future 29 (2004) 1043-1057. https://doi.org/10.1358/dof.2004.029.10.863395

[147] I. Pantic, J. Paunovic, J. Cumic, S. Valjarevic, G.A. Petroianu, P.R. Corridon. Artificial neural networks in contemporary toxicology research. Chemico-Biological Interactions 369 (2023) 110269. https://doi.org/10.1016/j.cbi.2022.110269

[148] N. Schapin, M. Majewski, A. Varela-Rial, C. Arroniz, G. De Fabritiis. Machine learning small molecule properties in drug discovery. Artificial Intelligence Chemistry 1 (2023) 100020. https://doi.org/10.1016/j.aichem.2023.100020

[149] P. Schyman, R. Liu, V. Desai, A. Wallqvist. vNN web server for ADMET predictions. Frontiers in Pharmacology 8 (2017) 889. https://doi.org/10.3389/fphar.2017.00889

[150] H. González-Díaz. ADMET-Multi-Output Cheminformatics Models for Drug Delivery, Interactomics, and Nanotoxicology. Current Drug Delivery 13 (2016) 1. https://pubmed.ncbi.nlm.nih.gov/27417300/

[151] A.T. Müller, J.A. Hiss, G. Schneider. Recurrent Neural Network Model for Constructive Peptide Design. Journal of Chemical Information and Modeling 58 (2018) 472-479. https://doi.org/10.1021/acs.jcim.7b00414

[152] A. De Carlo, D. Ronchi, M. Piastra, E.M. Tosca, P. Magni. Predicting ADMET Properties from Molecule SMILE: A Bottom-Up Approach Using Attention-Based Graph Neural Networks. Pharmaceutics 16 (2024) 776. https://doi.org/10.3390/pharmaceutics16060776

[153] M. Aburidi, R. Marcia. Wasserstein Distance-Based Graph Kernel for Enhancing Drug Safety and Efficacy Prediction*. Proceedings - 2024 IEEE 1st International Conference on Artificial Intelligence for Medicine, Health and Care, AIMHC (2024) 113-119. https://doi.org/10.1109/AIMHC59811.2024.00029

[154] L. Mescheder, S. Nowozin, A. Geiger. Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks. ArXiv (2017). http://dx.doi.org/10.48550/arXiv.1701.04722

[155] A. Genevay, G. Peyré, M. Cuturi. GAN and VAE from an Optimal Transport Point of View. (2017). http://arxiv.org/abs/1706.01807

[156] K. Tsaioun, B.J. Blaauboer, T. Hartung. Evidence-based absorption, distribution, metabolism, excretion (ADME) and its interplay with alternative toxicity methods. Altex 33 (2016) 343-358. https://doi.org/10.14573/altex.1610101

[157] L.K. Vora, A.D. Gholap, K. Jetha, R.R.S. Thakur, H.K. Solanki, V.P. Chavda. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics 15 (2023) 1916. https://doi.org/10.3390/pharmaceutics15071916

[158] J. Kim, W. Chang, H. Ji, I.S. Joung. Quantum-Informed Molecular Representation Learning Enhancing ADMET Property Prediction. Journal of Chemical Information and Modeling 64 (2024) 5028-5040. https://doi.org/10.1021/acs.jcim.4c00772

[159] C. Hu, K. V. Saboo, A.H. Ali, B.D. Juran, K.N. Lazaridis, R.K. Iyer. REMEDI: REinforcement learning-driven adaptive MEtabolism modeling of primary sclerosing cholangitis DIsease progression. Proceedings of Machine Learning Research 225 (2023) 157-189. https://doi.org/10.48550/arXiv.2310.01426

[160] R.K. Tan, Y. Liu, L. Xie. Reinforcement learning for systems pharmacology-oriented and personalized drug design. Expert Opinion on Drug Discovery 17 (2022) 849-863. https://doi.org/10.1080/17460441.2022.2072288

[161] S. Park, Y.H. Ko, B. Lee, B. Shin, B.R. Beck. Abstract 35: Molecular optimization of phase III trial failed anticancer drugs using target affinity and toxicity-centered multiple properties reinforcement learning. Clinical Cancer Research 26 (2020) 35-35. https://doi.org/10.1158/1557-3265.advprecmed20-35

[162] D. Yuan, H. He, Y. Wu, J. Fan, Y. Cao. Physiologically Based Pharmacokinetic Modeling of Nanoparticles. Journal of Pharmaceutical Sciences 108 (2019) 58-72. https://doi.org/10.1016/j.xphs.2018.10.037

[163] D. Deepika, V. Kumar. The Role of “Physiologically Based Pharmacokinetic Model (PBPK)” New Approach Methodology (NAM) in Pharmaceuticals and Environmental Chemical Risk Assessment. International Journal of Environmental Research and Public Health 20 (2023) 3473. https://doi.org/10.3390/ijerph20043473

[164] Y. Kamiya, K. Handa, T. Miura, M. Yanagi, K. Shigeta, S. Hina, M. Shimizu, M. Kitajima, F. Shono, K. Funatsu, H. Yamazaki. In Silico Prediction of Input Parameters for Simplified Physiologically Based Pharmacokinetic Models for Estimating Plasma, Liver, and Kidney Exposures in Rats after Oral Doses of 246 Disparate Chemicals. Chemical Research in Toxicology 34 (2021) 507-513. https://doi.org/10.1021/acs.chemrestox.0c00336

[165] W.C. Chou, Z. Lin. Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. Toxicological Sciences 191 (2023) 1-14. https://doi.org/10.1093/toxsci/kfac101

[166] Y. Li, Z. Wang, Y. Li, J. Du, X. Gao, Y. Li, L. Lai. A Combination of Machine Learning and PBPK Modeling Approach for Pharmacokinetics Prediction of Small Molecules in Humans. Pharmaceutical Research 41 (2024) 1369-1379. https://doi.org/10.1007/s11095-024-03725-y

[167] D. Naga, N. Parrott, G.F. Ecker, A. Olivares-Morales. Evaluation of the Success of High-Throughput Physiologically Based Pharmacokinetic (HT-PBPK) Modeling Predictions to Inform Early Drug Discovery. Molecular Pharmaceutics 19 (2022) 2203-2216. https://doi.org/10.1021/ACS.MOLPHARMACEUT.2C00040

[168] S. Habiballah, B. Reisfeld. Adapting physiologically-based pharmacokinetic models for machine learning applications. Scientific Reports 13 (2023) 14934. https://doi.org/10.1038/s41598-023-42165-3

[169] Y. Zhang, Q. Yang. An overview of multi-task learning. National Science Review 5 (2018) 30-43. https://doi.org/10.1093/nsr/nwx105

[170] S. Zhang, X. Luo, B. Mai. Multi-task machine learning models for simultaneous prediction of tissue-to-blood partition coefficients of chemicals in mammals. Environmental Research 241 (2024) 117603. https://doi.org/10.1016/j.envres.2023.117603

[171] M. Walter, J.M. Borghardt, L. Humbeck, M. Skalic. Multi-task ADME/PK Prediction at Industrial Scale: Leveraging Large and Diverse Experimental Datasets. ChemRxiv (2024) e202400079. https://doi.org/10.1002/minf.202400079

[172] Z. Zhao, L. Alzubaidi, J. Zhang, Y. Duan, Y. Gu. A comparison review of transfer learning and self-supervised learning: Definitions, applications, advantages and limitations. Expert Systems with Applications 242 (2024) 122807. https://doi.org/10.1016/j.eswa.2023.122807

[173] Z. Ye, Y. Yang, X. Li, D. Cao, D. Ouyang. An Integrated Transfer Learning and Multitask Learning Approach for Pharmacokinetic Parameter Prediction. Molecular Pharmaceutics 16 (2019) 533-541. https://doi.org/10.1021/acs.molpharmaceut.8b00816

[174] K. Abbasi, A. Poso, J. Ghasemi, M. Amanlou, A. Masoudi-Nejad. Deep transferable compound representation across domains and tasks for low data drug discovery. Journal of Chemical Information and Modeling (2019) 4528-4539. https://doi.org/10.1021/acs.jcim.9b00626

[175] S. Wang, Y. Guo, Y. Wang, H. Sun, J. Huang. Smiles-Bert: Large scale unsupervised pre-training for molecular property prediction. ACM-BCB 2019 - Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics (2019) 429-436. https://doi.org/10.1145/3307339.3342186

[176] X. Li, D. Fourches. Inductive transfer learning for molecular activity prediction: Next-Gen QSAR Models with MolPMoFiT. Journal of Cheminformatics 12 (2020) 27. https://doi.org/10.1186/s13321-020-00430-x

[177] S. Zhang, Z. Yan, Y. Huang, L. Liu, D. He, W. Wang, X. Fang, X. Zhang, F. Wang, H. Wu, H. Wang. HelixADMET: A robust and endpoint extensible ADMET system incorporating self-supervised knowledge transfer. Bioinformatics 38 (2022) 3444-3453. https://doi.org/10.1093/bioinformatics/btac342

[178] W. Jung, S. Goo, T. Hwang, H. Lee, Y.K. Kim, J.W. Chae, H.Y. Yun, S. Jung. Absorption Distribution Metabolism Excretion and Toxicity Property Prediction Utilizing a Pre-Trained Natural Language Processing Model and Its Applications in Early-Stage Drug Development. Pharmaceuticals 17 (2024) 382. https://doi.org/10.3390/ph17030382

[179] J. Wenzel, H. Matter, F. Schmidt. Predictive Multitask Deep Neural Network Models for ADME-Tox Properties: Learning from Large Data Sets. Journal of Chemical Information and Modeling 59 (2019) 1253-1268. https://doi.org/10.4155/fmc-2021-0138

[180] W. Saeed, C. Omlin. Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities. Knowledge-Based Systems 263 (2023) 110273. https://doi.org/10.1016/j.knosys.2023.110273

[181] R. Alizadehsani, S.S. Oyelere, S. Hussain, S.K. Jagatheesaperumal, R.R. Calixto, M. Rahouti, M. Roshanzamir, V.H.C. De Albuquerque. Explainable Artificial Intelligence for Drug Discovery and Development: A Comprehensive Survey. IEEE Access 12 (2024) 35796-35812. https://doi.org/10.1109/ACCESS.2024.3373195

[182] A. McGrath. What is AI interpretability? IBM (2024). https://www.ibm.com/think/topics/interpretability

[183] V. Vimbi, N. Shaffi, M. Mahmud. Interpreting artificial intelligence models: a systematic review on the application of LIME and SHAP in Alzheimer’s disease detection. Brain Informatics 11 (2024) 10. https://doi.org/10.1186/s40708-024-00222-1

[184] J. Patterson, N. Tatonetti. KG-LIME: predicting individualized risk of adverse drug events for multiple sclerosis disease-modifying therapy. Journal of the American Medical Informatics Association 31 (2024) 1693-1703. https://doi.org/10.1093/jamia/ocae155

[185] F. Gabbay, S. Bar-Lev, O. Montano, N. Hadad. A lime-based explainable machine learning model for predicting the severity level of covid-19 diagnosed patients. Applied Sciences (Switzerland) 11 (2021) 10417. https://doi.org/10.3390/app112110417

[186] S. Singh, R. Kumar, S. Payra, S.K. Singh. Artificial Intelligence and Machine Learning in Pharmacological Research: Bridging the Gap Between Data and Drug Discovery. Cureus 15(8) (2023) e44359. https://doi.org/10.7759/cureus.44359

[187] T.Z. Long, D.J. Jiang, S.H. Shi, Y.C. Deng, W.X. Wang, D.S. Cao. Enhancing Multi-species Liver Microsomal Stability Prediction through Artificial Intelligence. Journal of Chemical Information and Modeling 64 (2024) 3222-3236. https://doi.org/10.1021/acs.jcim.4c00159

[188] C. König, A. Vellido. Understanding predictions of drug profiles using explainable machine learning models. BioData Mining 17 (2024) 25. https://doi.org/10.1186/s13040-024-00378-w

[189] R. Rodríguez-Pérez, J. Bajorath. Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions. Journal of Computer-Aided Molecular Design 34 (2020) 1013-1026. https://doi.org/10.1007/s10822-020-00314-0

[190] S. Marshall, R. Madabushi, E. Manolis, K. Krudys, A. Staab, K. Dykstra, S.A.G. Visser. Model-Informed Drug Discovery and Development: Current Industry Good Practice and Regulatory Expectations and Future Perspectives. CPT: Pharmacometrics and Systems Pharmacology 8 (2019) 87-96. https://doi.org/10.1002/psp4.12372

[191] N. Terranova, D. Renard, M.H. Shahin, S. Menon, Y. Cao, C.E.C.A. Hop, S. Hayes, K. Madrasi, S. Stodtmann, T. Tensfeldt, P. Vaddady, N. Ellinwood, J. Lu. Artificial Intelligence for Quantitative Modeling in Drug Discovery and Development: An Innovation and Quality Consortium Perspective on Use Cases and Best Practices. Clinical Pharmacology and Therapeutics 115 (2024) 658-672. https://doi.org/10.1002/cpt.3053

[192] S.H. Kang, M.R. Poynton, K.M. Kim, H. Lee, D.H. Kim, S.H. Lee, K.S. Bae, O. Linares, S.E. Kern, G.J. Noh. Population pharmacokinetic and pharmacodynamic models of remifentanil in healthy volunteers using artificial neural network analysis. British Journal of Clinical Pharmacology 64 (2007) 3-13. https://doi.org/10.1111/j.1365-2125.2007.02845.x

[193] B. Canault, S. Bourg, P. Vayer, P. Bonnet. Comprehensive Network Map of ADME-Tox Databases. Molecular Informatics 36 (2017) 1700029. https://doi.org/10.1002/minf.201700029

[194] S. Ekins, A.J. Williams. Precompetitive preclinical ADME/Tox data: Set it free on the web to facilitate computational model building and assist drug development. Lab on a Chip 10 (2010) 13-22. https://doi.org/10.1039/b917760b

[195] G. Pawar, J.C. Madden, D. Ebbrell, J.W. Firman, M.T.D. Cronin. In silico toxicology data resources to support read-across and (Q)SAR. Frontiers in Pharmacology 10 (2019) 561. https://doi.org/10.3389/fphar.2019.00561

[196] M.A. Miteva, S. Violas, M. Montes, D. Gomez, P. Tuffery, B.O. Villoutreix. FAF-Drugs: Free ADME/tox filtering of compound collections. Nucleic Acids Research 34 (2006) W738-W744. https://doi.org/10.1093/nar/gkl065

[197] D. Rao, V.N. Gudivada, V. V. Raghavan. Data quality issues in big data. Proceedings - 2015 IEEE Int

Comments (0)

No login
gif