Macrophage-Centric Immunometabolic Crosstalk in Alopecia Areata Pathogenesis: Mechanisms and Therapeutic Implications

Pratt CH, King LE Jr, Messenger AG, Christiano AM, Sundberg JP (2017) Alopecia areata. Nature Rev Dis Prime 3:17011. https://doi.org/10.1038/nrdp.2017.11

Article  Google Scholar 

Lee HH et al (2020) Epidemiology of alopecia areata, ophiasis, totalis, and universalis: a systematic review and meta-analysis. J Am Acad Dermatol 82:675–682. https://doi.org/10.1016/j.jaad.2019.08.032

Article  CAS  PubMed  Google Scholar 

Simakou T, Butcher JP, Reid S, Henriquez FL (2019) Alopecia areata: a multifactorial autoimmune condition. J Autoimmun 98:74–85. https://doi.org/10.1016/j.jaut.2018.12.001

Article  CAS  PubMed  Google Scholar 

Strazzulla LC et al (2018) Alopecia areata: an appraisal of new treatment approaches and overview of current therapies. J Am Acad Dermatol 78:15–24. https://doi.org/10.1016/j.jaad.2017.04.1142

Article  PubMed  Google Scholar 

Ito T et al (2004) Collapse and restoration of MHC class-I-dependent immune privilege: exploiting the human hair follicle as a model. Am J Pathol 164:623–634. https://doi.org/10.1016/s0002-9440(10)63151-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bertolini M et al (2014) Abnormal interactions between perifollicular mast cells and CD8+ T-cells may contribute to the pathogenesis of alopecia areata. PLoS ONE 9:e94260. https://doi.org/10.1371/journal.pone.0094260

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luger TA, Scholzen T, Grabbe S (1997) The role of alpha-melanocyte-stimulating hormone in cutaneous biology. J Investigat Dermatol Sympos Proceed 2(1):87–93. https://doi.org/10.1038/jidsymp.1997.17

Article  CAS  Google Scholar 

Meyer KC et al (2008) Evidence that the bulge region is a site of relative immune privilege in human hair follicles. Br J Dermatol 159:1077–1085. https://doi.org/10.1111/j.1365-2133.2008.08818.x

Article  CAS  PubMed  Google Scholar 

Ito T et al (2008) Maintenance of hair follicle immune privilege is linked to prevention of NK cell attack. J Invest Dermatol 128:1196–1206. https://doi.org/10.1038/sj.jid.5701183

Article  CAS  PubMed  Google Scholar 

Lu C, Thompson CB (2012) Metabolic regulation of epigenetics. Cell Metab 16:9–17. https://doi.org/10.1016/j.cmet.2012.06.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ayyangar U et al (2024) Metabolic rewiring of macrophages by epidermal-derived lactate promotes sterile inflammation in the murine skin. EMBO J 43:1113–1134. https://doi.org/10.1038/s44318-024-00039-y

Article  PubMed  PubMed Central  Google Scholar 

Locati M, Curtale G, Mantovani A (2020) Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol 15:123–147. https://doi.org/10.1146/annurev-pathmechdis-012418-012718

Article  CAS  PubMed  Google Scholar 

Netea MG, Joosten LA, Latz E, Mills KH, Natoli G, Stunnenberg HG, O’Neill LA, Xavier RJ (2016) Trained immunity: a program of innate immune memory in health and disease. Science. 352(6284):aaf1098

Article  PubMed  PubMed Central  Google Scholar 

Finner AM (2011) Alopecia areata: clinical presentation, diagnosis, and unusual cases. Dermatol Ther 24:348–354. https://doi.org/10.1111/j.1529-8019.2011.01413.x

Article  PubMed  Google Scholar 

Sies H, Jones DP (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21:363–383. https://doi.org/10.1038/s41580-020-0230-3

Article  CAS  PubMed  Google Scholar 

Zhang D et al (2019) Metabolic regulation of gene expression by histone lactylation. Nature 574:575–580. https://doi.org/10.1038/s41586-019-1678-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soto-Heredero G (2020) Gómez de Las Heras MM, Gabandé-Rodríguez E, Oller J, Mittelbrunn M (2020) Glycolysisa key player in the inflammatory response. FEBS J 287(16):3350–69

CAS  PubMed  PubMed Central  Google Scholar 

Cheng QJ et al (2021) NF-kappaB dynamics determine the stimulus specificity of epigenomic reprogramming in macrophages. Science 372:1349–1353. https://doi.org/10.1126/science.abc0269

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gilhar A, Etzioni A, Paus R (2012) Alopecia areata. N Engl J Med 366:1515–1525. https://doi.org/10.1056/NEJMra1103442

Article  CAS  PubMed  Google Scholar 

Craig VJ, Zhang L, Hagood JS, Owen CA (2015) Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 53:585–600. https://doi.org/10.1165/rcmb.2015-0020TR

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martínez-Sabadell A, Arenas EJ, Arribas J (2022) IFNγ signaling in natural and therapy-induced antitumor responses. Clin Cancer Res 28:1243–1249. https://doi.org/10.1158/1078-0432.Ccr-21-3226

Article  PubMed  Google Scholar 

Petukhova L et al (2010) Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 466:113–117. https://doi.org/10.1038/nature09114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paus R, Nickoloff BJ, Ito T (2005) A ‘hairy’ privilege. Trends Immunol 26:32–40. https://doi.org/10.1016/j.it.2004.09.014

Article  CAS  PubMed  Google Scholar 

Paus R, Eichmüller S, Hofmann U, Czarnetzki BM, Robinson P (1994) Expression of classical and non-classical MHC class I antigens in murine hair follicles. Br J Dermatol 131:177–183. https://doi.org/10.1111/j.1365-2133.1994.tb08488.x

Article  CAS  PubMed  Google Scholar 

Hamed FN et al (2019) Alopecia areata patients show deficiency of FOXP3+CD39+ T regulatory cells and clonotypic restriction of Treg TCRβ-chain, which highlights the immunopathological aspect of the disease. PLoS ONE 14:e0210308. https://doi.org/10.1371/journal.pone.0210308

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raffin C, Vo LT, Bluestone JA (2020) T(reg) cell-based therapies: challenges and perspectives. Nat Rev Immunol 20:158–172. https://doi.org/10.1038/s41577-019-0232-6

Article  CAS  PubMed  Google Scholar 

Zöller M, McElwee KJ, Vitacolonna M, Hoffmann R (2004) Apoptosis resistance in peripheral blood lymphocytes of alopecia areata patients. J Autoimmun 23:241–256. https://doi.org/10.1016/j.jaut.2004.08.002

Article  CAS  PubMed  Google Scholar 

Speiser JJ et al (2019) Regulatory T-cells in alopecia areata. J Cutan Pathol 46:653–658. https://doi.org/10.1111/cup.13479

Article  PubMed  Google Scholar 

Han YM et al (2015) Imbalance of T-helper 17 and regulatory T cells in patients with alopecia areata. J Dermatol 42:981–988. https://doi.org/10.1111/1346-8138.12978

Article  CAS 

Comments (0)

No login
gif