Phenome-wide comorbidity network analysis reveals clinical risk patterns in enthesopathy and enthesitis

Abstract

Background Enthesopathy and enthesitis, including rotator cuff disease and other tendon disorders, represent a heterogeneous group of musculoskeletal conditions with complex etiologies. Understanding how systemic health profiles influence their onset remains a critical challenge in musculoskeletal medicine.

Methods We conducted a large-scale, phenome-wide comorbidity analysis using longitudinal electronic health records (EHR) from 432,757 UK Biobank participants. Incident cases of peripheral enthesopathies were compared to controls across 434 baseline disease phenotypes. A directed ego network was constructed to link significantly associated comorbidities to the target condition using odds ratio-based associations. Unsupervised clustering via UMAP and DBSCAN identified data-driven comorbidity clusters, which were consolidated into unified endotypes-interpreted as distinct systemic profiles contributing to disease risk. Additionally, metapath-based trajectory analysis was applied to uncover temporally structured multimorbidity chains leading to disease onset.

Results We identified 183 baseline conditions significantly associated with the future development of enthesopathy (FDR < 0.05). Network clustering revealed eight comorbidity clusters, which were consolidated into four unified endotypes: Metabolic-Psychosomatic, Inflammatory-Multisystem, Mechanical-Injury-driven, and Aging-Intervention-related. Metapath analysis uncovered common three-step disease trajectories, such as metabolic-infectious-musculoskeletal and inflammatory skin-to-joint progressions, highlighting potential mechanistic pathways. These endotypes showed diverse clinical features but shared biological coherence, suggesting that different systemic health profiles can converge to drive tendon-related disease.

Conclusions This study introduces a scalable framework for identifying systemic multimorbidity patterns underlying enthesopathy and enthesitis using phenome-wide comorbidity networks. By integrating network clustering and metapath analysis, we uncover interpretable, data-driven endotypes that may inform individualized risk assessment and targeted care strategies. These findings contribute to the growing field of biobank-scale disease modeling and offer a foundation for precision approaches in musculoskeletal medicine.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This work was supported by National Institute of General Medical Sciences (NIGMS) [R01 GM138597].

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

We acknowledge all the participants of the UK Biobank. The use of the UK Biobank resource was approved under Application Number 32133.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

We acknowledge all the participants of the UK Biobank. The use of the UK Biobank resource was approved under Application Number 32133.

Comments (0)

No login
gif