RNA-seq and ChIP-seq unveils thyroid hormone receptor α deficiency affects skeletal muscle myoblast proliferation and differentiation via Col6a1 during aging

Bloise FF, Cordeiro A, Ortiga-Carvalho TM (2018) Role of thyroid hormone in skeletal muscle physiology [J]. J Endocrinol 236(1):R57–r68

Article  PubMed  Google Scholar 

Brent GA (2023) A historical reflection on scientific advances in Understanding thyroid hormone Action [J]. Thyroid 33(10):1140–1149

Article  CAS  PubMed  Google Scholar 

Cappola AR, Auchus RJ, El-Hajj Fuleihan G et al (2023) Hormones and aging: an endocrine society scientific Statement [J]. J Clin Endocrinol Metab 108(8):1835–1874

Article  PubMed  PubMed Central  Google Scholar 

Chen Z, Wu Q, Yan C, Du J (2019) COL6A1 knockdown suppresses cell proliferation and migration in human aortic vascular smooth muscle cells [J]. Exp Ther Med 18(3):1977–1984

CAS  PubMed  PubMed Central  Google Scholar 

Chen C, Zhou M, Ge Y, Wang X (2020) SIRT1 and aging related signaling pathways [J]. Mech Ageing Dev 187:111215

Article  CAS  PubMed  Google Scholar 

Chen J, Wei L, Zhu X et al (2023) TT3, a more practical Indicator for evaluating the relationship between sarcopenia and thyroid hormone in the euthyroid elderly compared with FT3 [J]. Clin Interv Aging 18:1285–1293

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older People [J]. Age Ageing 39(4):412–423

Article  PubMed  PubMed Central  Google Scholar 

Cruz-Jentoft AJ, Bahat G, Bauer J et al (2019) Sarcopenia: revised European consensus on definition and diagnosis [J]. Age Ageing 48(1):16–31

Article  PubMed  Google Scholar 

Di Martino A, Cescon M, D’agostino C et al (2023) Collagen VI in the musculoskeletal System [J]. Int J Mol Sci, 24(6)

Dowling P, Gargan S, Swandulla D, Ohlendieck K (2023) Fiber-Type shifting in sarcopenia of old age: proteomic profiling of the contractile apparatus of skeletal Muscles [J]. Int J Mol Sci, 24(3)

Dutta S, Sengupta P (2016) Men and mice: relating their ages [J]. Life Sci 152:244–248

Article  CAS  PubMed  Google Scholar 

Gellhaus B, Böker KO, Schilling AF, Saul D (2023) Therapeutic consequences of targeting the IGF-1/PI3K/AKT/FOXO3 Axis in sarcopenia: A narrative Review [J]. Cells, 12(24)

Graham ZA, Gallagher PM, Cardozo CP (2015) Focal adhesion kinase and its role in skeletal muscle [J]. J Muscle Res Cell Motil, 36(4–5): 305– 15

Kedlian VR, Wang Y, Liu T et al (2024) Human skeletal muscle aging atlas [J]. Nat Aging 4(5):727–744

Article  PubMed  PubMed Central  Google Scholar 

Lai Y, Ramírez-Pardo I, Isern J et al (2024) Multimodal Cell Atlas Ageing Hum Skeletal muscle[J] Nat 629(8010):154–164

CAS  Google Scholar 

Leduc-Gaudet JP, Hussain SNA, Barreiro E, Gouspillou G (2021) Mitochondrial dynamics and mitophagy in skeletal muscle health and Aging [J]. Int J Mol Sci, 22(15)

Levi N, Papismadov N, Solomonov I, Sagi I, Krizhanovsky V (2020) The ECM path of senescence in aging: components and modifiers [J]. Febs J 287(13):2636–2646

Article  CAS  PubMed  Google Scholar 

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2023) Hallmarks of aging: an expanding universe [J]. Cell 186(2):243–278

Article  PubMed  Google Scholar 

Loreti M, Sacco A (2022) The jam session between muscle stem cells and the extracellular matrix in the tissue microenvironment [J]. NPJ Regen Med 7(1):16

Article  CAS  PubMed  PubMed Central  Google Scholar 

Milanesi A, Lee JW, Kim NH et al (2016) Thyroid hormone receptor α plays an essential role in male skeletal muscle myoblast proliferation, differentiation, and response to Injury [J]. Endocrinology 157(1):4–15

Article  CAS  PubMed  Google Scholar 

Nishikawa H, Fukunishi S, Asai A et al (2021) Pathophysiology and mechanisms of primary sarcopenia (Review) [J]. Int J Mol Med, 48(2)

Palla AR, Ravichandran M, Wang YX et al (2021) Inhibition of prostaglandin-degrading enzyme 15-PGDH rejuvenates aged muscle mass and strength [J]. Science, 371(6528)

Prabakaran AD, Mcfarland K, Miz K et al (2024) Intermittent glucocorticoid treatment improves muscle metabolism via the PGC1α/Lipin1 axis in an aging-related sarcopenia model [J]. J Clin Invest, 134(11)

Præstholm SM, Siersbæk MS, Nielsen R et al (2020) Multiple mechanisms regulate H3 acetylation of enhancers in response to thyroid hormone [J]. PLoS Genet 16(5):e1008770

Article  PubMed  PubMed Central  Google Scholar 

Schüler SC, Liu Y, Dumontier S et al (2022) Extracellular matrix: brick and mortar in the skeletal muscle stem cell niche [J]. Front Cell Dev Biol 10:1056523

Article  PubMed  PubMed Central  Google Scholar 

Shen X, Wang C, Zhou X et al (2024) Nonlinear dynamics of multi-omics profiles during human aging [J]. Nat Aging 4(11):1619–1634

Article  PubMed  PubMed Central  Google Scholar 

Sheng Y, Ma D, Zhou Q et al (2019) Association of thyroid function with sarcopenia in elderly Chinese euthyroid subjects [J]. Aging Clin Exp Res 31(8):1113–1120

Article  PubMed  Google Scholar 

Sheng Y, Zhu X, Wei L et al (2024) Aberrant expression of thyroidal hormone receptor α exasperating mitochondrial dysfunction induced sarcopenia in aged mice [J]. Aging 16(8):7141–7152

CAS  PubMed  PubMed Central  Google Scholar 

Song L, Xue J, Xu L et al (2024) Muscle-specific PGC-1α modulates mitochondrial oxidative stress in aged sarcopenia through regulating Nrf2 [J]. Exp Gerontol 193:112468

Article  CAS  PubMed  Google Scholar 

Sousa-Victor P, García-Prat L, Muñoz-Cánoves P (2022) Control of satellite cell function in muscle regeneration and its disruption in ageing [J]. Nat Rev Mol Cell Biol 23(3):204–226

Article  CAS  PubMed  Google Scholar 

Tabibzadeh S (2021) Signaling pathways and effectors of aging [J]. Front Biosci (Landmark Ed) 26(1):50–96

Article  CAS  PubMed  Google Scholar 

Terrell K, Choi S, Choi S (2023) Calcium’s Role and Signaling in Aging Muscle, Cellular Senescence, and Mineral Interactions [J]. Int J Mol Sci, 24(23)

Van Heemst D (2024) The ageing thyroid: implications for longevity and patient care [J]. Nat Rev Endocrinol 20(1):5–15

Article  PubMed  Google Scholar 

Wallace MA, Aguirre NW, Marcotte GR et al (2021) The ketogenic diet preserves skeletal muscle with aging in mice [J]. Aging Cell 20(4):e13322

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L, Sheng Y, Xu W et al (2021) Mechanism of thyroid hormone signaling in skeletal muscle of aging mice [J]. Endocrine 72(1):132–139

Article  CAS  PubMed  Google Scholar 

Wejaphikul K, Van Gucht ALM, Groeneweg S et al (2019) The in vitro functional impairment of thyroid hormone receptor alpha 1 isoform mutants is mainly dictated by reduced ligand Sensitivity [J]. Thyroid 29(12):1834–1842

Article  CAS  PubMed  Google Scholar 

Wu J, Lin S, Chen W et al (2023) TNF-α contributes to sarcopenia through caspase-8/caspase-3/GSDME-mediated pyroptosis[J]. Cell Death Discov, 9(1): 76

Xie WQ, He M, Yu DJ et al (2021) Mouse models of sarcopenia: classification and evaluation [J]. J Cachexia Sarcopenia Muscle 12(3):538–554

Article  PubMed  PubMed Central  Google Scholar 

Yang YF, Yang W, Liao ZY et al (2021) MICU3 regulates mitochondrial Ca(2+)-dependent antioxidant response in skeletal muscle aging [J]. Cell Death Dis 12(12):1115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yen PM (2001) Physiological and molecular basis of thyroid hormone action [J]. Physiol Rev 81(3):1097–1142

Article  CAS  PubMed  Google Scholar 

Zekri Y, Guyot R, Flamant F (2022) An Atlas of Thyroid Hormone Receptors’ Target Genes in Mouse Tissues [J]. Int J Mol Sci, 23(19)

Zeng Z, Liang J, Wu L et al (2020) Exercise-Induced autophagy suppresses sarcopenia through Akt/mTOR and Akt/FoxO3a signal pathways and AMPK-Mediated mitochondrial quality Control [J]. Front Physiol 11:583478

Article  PubMed  PubMed Central 

Comments (0)

No login
gif