miR-2400 promotes proliferation of bovine skeletal muscle-derived satellite cells by regulating MAGED1 genes expression

Anderson C, Catoe H, Werner R (2006) MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res 34(20):5863–5871. https://doi.org/10.1093/nar/gkl743

Article  PubMed  PubMed Central  CAS  Google Scholar 

Baghdadi MB, Firmino J, Soni K, Evano B, Di Girolamo D, Mourikis P, Castel D, Tajbakhsh S (2018) Notch-Induced miR-708 antagonizes satellite cell migration and maintains quiescence. Cell Stem Cell 23(6):859–868e5. https://doi.org/10.1016/j.stem.2018.09.017

Article  PubMed  CAS  Google Scholar 

Ballarino M, Morlando M, Fatica A, Bozzoni I (2016) Non-coding RNAs in muscle differentiation and musculoskeletal disease. J Clin Invest 126(6):2021–2030. https://doi.org/10.1172/JCI84419

Article  PubMed  PubMed Central  Google Scholar 

Bertrand M, Huijbers I, Chomez P, De Backer O (2004) Comparative expression analysis of the MAGED genes during embryogenesis and brain development. Dev Dynamics: Official Publication Am Association Anatomists 230(2):325–334. https://doi.org/10.1002/dvdy.20026

Article  CAS  Google Scholar 

Braun T, Gautel M (2011) Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol 12(6):349–361. https://doi.org/10.1038/nrm3118

Article  PubMed  CAS  Google Scholar 

Cheedipudi S, Puri D, Saleh A, Gala HP, Rumman M, Pillai MS, Sreenivas P, Arora R, Sellathurai J, Schrøder HD, Mishra RK, Dhawan J (2015) A fine balance: epigenetic control of cellular quiescence by the tumor suppressor PRDM2/RIZ at a bivalent domain in the Cyclin a gene. Nucleic Acids Res 43(13):6236–6256. https://doi.org/10.1093/nar/gkv567

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen JF, Tao Y, Li J, Deng Z, Yan Z, Xiao X, Wang DZ (2010) microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol 190(5):867–879. https://doi.org/10.1083/jcb.200911036

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cheung TH, Quach NL, Charville GW, Liu L, Park L, Edalati A, Yoo B, Hoang P, Rando TA (2012) Maintenance of muscle stem-cell quiescence by microRNA-489. Nature 482(7386):524–528. https://doi.org/10.1038/nature10834

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dey BK, Gagan J, Dutta A (2011) miR-206 and– 486 induce myoblast differentiation by downregulating Pax7. Mol Cell Biol 31(1):203–214. https://doi.org/10.1128/MCB.01009-10

Article  PubMed  CAS  Google Scholar 

Dey BK, Mueller AC, Dutta A (2014) Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription 5(4):e944014. https://doi.org/10.4161/21541272.2014.944014

Article  PubMed  PubMed Central  Google Scholar 

Du Q, Zhang Y, Tian XX, Li Y, Fang WG (2009) MAGE-D1 inhibits proliferation, migration and invasion of human breast cancer cells. Oncol Rep 22(3):659–665. https://doi.org/10.3892/or_00000486

Article  PubMed  CAS  Google Scholar 

Elnour IE, Wang X, Zhansaya T, Akhatayeva Z, Khan R, Cheng J, Hung Y, Lan X, Lei C, Chen H (2021) Circular RNA circMYL1 inhibit proliferation and promote differentiation of myoblasts by sponging miR-2400. Cells 10(1):176. https://doi.org/10.3390/cells10010176

Article  PubMed  PubMed Central  CAS  Google Scholar 

Giordani L, Parisi A, Le Grand F (2018) Satellite cell Self-Renewal. Curr Top Dev Biol 126:177–203. https://doi.org/10.1016/bs.ctdb.2017.08.001

Article  PubMed  Google Scholar 

Glazov EA, Kongsuwan K, Assavalapsakul W, Horwood PF, Mitter N, Mahony TJ (2009) Repertoire of bovine MiRNA and MiRNA-like small regulatory RNAs expressed upon viral infection. PLoS ONE 4(7):e6349. https://doi.org/10.1371/journal.pone.0006349

Article  PubMed  PubMed Central  CAS  Google Scholar 

Greco S, Cardinali B, Falcone G, Martelli F (2018) Circular RNAs in muscle function and disease. Int J Mol Sci 19(11):3454. https://doi.org/10.3390/ijms19113454

Article  PubMed  PubMed Central  CAS  Google Scholar 

He DT, Zou TD, Gai XR, Ma JD, Li MZ, Huang ZQ, Chen DW (2017) MicroRNA expression profiles differ between primary myofiber of lean and obese pig breeds. PLoS ONE 12(7):e0181897. https://doi.org/10.1371/journal.pone.0181897

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hernández-Hernández JM, García-González EG, Brun CE, Rudnicki MA (2017) The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Semin Cell Dev Biol 72:10–18. https://doi.org/10.1016/j.semcdb.2017.11.010

Article  PubMed  PubMed Central  CAS  Google Scholar 

Horak M, Novak J, Bienertova-Vasku J (2016) Muscle-specific MicroRNAs in skeletal muscle development. Dev Biol 410(1):1–13. https://doi.org/10.1016/j.ydbio.2015.12.013

Article  PubMed  CAS  Google Scholar 

Ji SS, Ma P, Cao XR, Wang J, Yu XJ, Luo XM, Lu JY, Hou W, Zhang ZJ, Yan Y, Dong YJ, Wang HD (2022) Myoblast-derived exosomes promote the repair and regeneration of injured skeletal muscle in mice. FEBS Open Bio 12(12):213–2226. https://doi.org/10.1002/2211-5463.13504

Article  CAS  Google Scholar 

Kästner S, Elias MC, Rivera AJ, Yablonka-Reuveni Z (2000) Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J Histochem Cytochem 48(8):1079–1096. https://doi.org/10.1177/002215540004800805

Article  PubMed  Google Scholar 

Kostyniuk DJ, Mennigen JA (2020) Meta-analysis of differentially-regulated hepatic MicroRNAs identifies candidate post-transcriptional regulation networks of intermediary metabolism in rainbow trout. Comp Biochem Physiol Part D Genomics Proteom 36:100750. https://doi.org/10.1016/j.cbd.2020.100750

Article  CAS  Google Scholar 

Krol J, Loedige I, Filipowicz W (2016) The widespread regulation of MicroRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610. https://doi.org/10.1038/nrg2843

Article  CAS  Google Scholar 

Lee S, Shin HS, Shireman PK, Vasilaki A, Van Remmen H, Csete ME (2006) Glutathione-peroxidase-1 null muscle progenitor cells are globally defective. Free Radic Biol Med 41(7):1174–1184. https://doi.org/10.1016/j.freeradbiomed.2006.07.005

Lee JY, Kim S, Hwang DW, Jeong JM, Chung JK, Lee MC, Lee DS (2008) Development of a dual-luciferase reporter system for in vivo visualization of MicroRNA biogenesis and posttranscriptional regulation. Journal of nuclear medicine: official publication. Soc Nuclear Med 49(2):285–294. https://doi.org/10.2967/jnumed.107.042507

Article  CAS  Google Scholar 

MAURO A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9(2):493–495. https://doi.org/10.1083/jcb.9.2.493

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mitchelson KR, Qin WY (2015) Roles of the canonical MyomiRs miR-1, -133 and– 206 in cell development and disease. World J Biol Chem 6(3):162–208. https://doi.org/10.4331/wjbc.v6.i3.162

Article  PubMed  PubMed Central  Google Scholar 

Mok GF, Lozano-Velasco E, Münsterberg A (2017) MicroRNAs in skeletal muscle development. Semin Cell Dev Biol 72:67–76. https://doi.org/10.1016/j.semcdb.2017.10.032

Article  PubMed  CAS  Google Scholar 

Moore CB, Guthrie EH, Huang MT, Taxman DJ (2010) Short hairpin RNA (shRNA): design, delivery, and assessment of gene knockdown. Methods Mol Biol 629:141–158. https://doi.org/10.1007/978-1-60761-657-3_10

Article  PubMed  PubMed Central  CAS 

Comments (0)

No login
gif