Insights into human muscle biology from human primary skeletal muscle cell culture

Abbas M, Moradi F, Hu W, Regudo KL, Osborne M, Pettipas J, Atallah DS, Hachem R, Ott-Peron N, Stuart JA (2021) Vertebrate cell culture as an experimental approach– limitations and solutions. Comp Biochem Physiol B: Biochem Mol Biol 254:110570. https://doi.org/10.1016/j.cbpb.2021.110570

Article  PubMed  CAS  Google Scholar 

Agley CC, Rowlerson AM, Velloso CP, Lazarus NR, Harridge SDR (2013) Human skeletal muscle fibroblasts, but not myogenic cells, readily undergo adipogenic differentiation. J Cell Sci 126(24):5610–5625. https://doi.org/10.1242/jcs.132563

Article  PubMed  CAS  Google Scholar 

Agley CC, Rowlerson AM, Velloso CP, Lazarus NL, Harridge SDR (2015) Isolation and Quantitative Immunocytochemical Characterization of Primary Myogenic Cells and Fibroblasts from Human Skeletal Muscle. Journal of Visualized Experiments, 95. https://doi.org/10.3791/52049

Agley CC, Lewis FC, Jaka O, Lazarus NR, Velloso C, Francis-West P, Ellison-Hughes GM, Harridge SDR (2017) Active GSK3β and an intact β-catenin TCF complex are essential for the differentiation of human myogenic progenitor cells. Sci Rep 7(1):13189. https://doi.org/10.1038/s41598-017-10731-1

Article  PubMed  PubMed Central  CAS  Google Scholar 

Allen SL, Marshall RN, Edwards SJ, Lord JM, Lavery GG, Breen L (2021) The effect of young and old ex vivo human serum on cellular protein synthesis and growth in an in vitro model of aging. Am J Physiology-Cell Physiol 321(1):C26–C37. https://doi.org/10.1152/ajpcell.00093.2021

Article  CAS  Google Scholar 

Allen SL, Elliott BT, Carson BP, Breen L (2023) Improving physiological relevance of cell culture: the possibilities, considerations, and future directions of the ex vivo coculture model. Am J Physiology-Cell Physiol 324(2):C420–C427. https://doi.org/10.1152/ajpcell.00473.2022

Article  CAS  Google Scholar 

Alsharidah M, Lazarus NR, George TE, Agley CC, Velloso CP, Harridge SDR (2013) Primary human muscle precursor cells obtained from young and old donors produce similar proliferative, differentiation and senescent profiles in culture. Aging Cell 12(3):333–344. https://doi.org/10.1111/acel.12051

Article  PubMed  CAS  Google Scholar 

Arrighi N, Moratal C, Clément N, Giorgetti-Peraldi S, Peraldi P, Loubat A, Kurzenne J-Y, Dani C, Chopard A, Dechesne CA (2015) Characterization of adipocytes derived from fibro/adipogenic progenitors resident in human skeletal muscle. Cell Death Dis 6(4):e1733–e1733. https://doi.org/10.1038/cddis.2015.79

Article  PubMed  PubMed Central  CAS  Google Scholar 

Baczynska AM, Shaw S, Roberts HC, Cooper C, Sayer A, A., Patel HP (2016) Human Vastus lateralis skeletal muscle biopsy using the Weil-Blakesley conchotome. J Visualized Experiments 2016(109). https://doi.org/10.3791/53075

Balan E, De Groote E, Bouillon M, Viceconte N, Mahieu M, Naslain D, Nielens H, Decottignies A, Deldicque L (2020) No effect of the endurance training status on senescence despite reduced inflammation in skeletal muscle of older individuals. Am J Physiology-Endocrinology Metabolism 319(2):E447–E454. https://doi.org/10.1152/ajpendo.00149.2020

Article  CAS  Google Scholar 

Barberi L, Scicchitano BM, De Rossi M, Bigot A, Duguez S, Wielgosik A, Stewart C, McPhee J, Conte M, Narici M, Franceschi C, Mouly V, Butler-Browne G, Musarò A (2013) Age-dependent alteration in muscle regeneration: the critical role of tissue niche. Biogerontology 14(3):273–292. https://doi.org/10.1007/s10522-013-9429-4

Article  PubMed  PubMed Central  CAS  Google Scholar 

Baroffio A, Bochaton-Piallat ML, Gabbiani G, Bader CR (1995) Heterogeneity in the progeny of single human muscle satellite cells. Differentiation 59(4):259–268. https://doi.org/10.1046/j.1432-0436.1995.5940259.x

Article  PubMed  CAS  Google Scholar 

Barruet E, Garcia SM, Striedinger K, Wu J, Lee S, Byrnes L, Wong A, Xuefeng S, Tamaki S, Brack AS, Pomerantz JH (2020) Functionally heterogeneous human satellite cells identified by single cell RNA sequencing. ELife, 9. https://doi.org/10.7554/eLife.51576

Beccafico S, PUGLIELLI C, PIETRANGELO T, BELLOMO R, FANÒ, G., FULLE S (2007) Age-Dependent effects on functional aspects in human satellite cells. Ann N Y Acad Sci 1100(1):345–352. https://doi.org/10.1196/annals.1395.037

Article  PubMed  CAS  Google Scholar 

Beccafico S, Riuzzi F, Puglielli C, Mancinelli R, Fulle S, Sorci G, Donato R (2011) Human muscle satellite cells show age-related differential expression of S100B protein and RAGE. AGE 33(4):523–541. https://doi.org/10.1007/s11357-010-9197-x

Article  PubMed  CAS  Google Scholar 

Bechshøft CJL, Jensen SM, Schjerling P, Andersen JL, Svensson RB, Eriksen CS, Mkumbuzi NS, Kjaer M, Mackey AL (2019a) Age and prior exercise in vivo determine the subsequent in vitro molecular profile of myoblasts and nonmyogenic cells derived from human skeletal muscle. Am J Physiology-Cell Physiol 316(6):C898–C912. https://doi.org/10.1152/ajpcell.00049.2019

Article  CAS  Google Scholar 

Bechshøft CJL, Schjerling P, Kjaer M, Mackey AL (2019b) The influence of direct and indirect fibroblast cell contact on human myogenic cell behavior and gene expression in vitro. J Appl Physiol 127(2):342–355. https://doi.org/10.1152/japplphysiol.00215.2019

Article  PubMed  CAS  Google Scholar 

Bell G (2016) Replicates and repeats. BMC Biol 14(1):28. https://doi.org/10.1186/s12915-016-0254-5

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bergström J, Hultman E (1967) A study of the glycogen metabolism during exercise in man. Scand J Clin Lab Investig 19(3):218–228. https://doi.org/10.3109/00365516709090629

Article  Google Scholar 

Bertoncello I (2019) Optimizing the Cell Culture Microenvironment. In I. Bertoncello (Ed.), Mouse Cell Culture: Methods and Protocols (pp. 23–30). Springer New York. https://doi.org/10.1007/978-1-4939-9086-3_2

Bigot A, Duddy WJ, Ouandaogo ZG, Negroni E, Mariot V, Ghimbovschi S, Harmon B, Wielgosik A, Loiseau C, Devaney J, Dumonceaux J, Butler-Browne G, Mouly V, Duguez S (2015) Age-Associated methylation suppresses SPRY1, leading to a failure of Re-quiescence and loss of the reserve stem cell pool in elderly muscle. Cell Rep 13(6):1172–1182. https://doi.org/10.1016/j.celrep.2015.09.067

Article  PubMed  CAS  Google Scholar 

Blau HM, Webster C (1981) Isolation and characterization of human muscle cells. Proceedings of the National Academy of Sciences, 78(9), 5623–5627. https://doi.org/10.1073/pnas.78.9.5623

Blau HM, Chiu C-P, Webster C (1983) Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32(4):1171–1180. https://doi.org/10.1016/0092-8674(83)90300-8

Article  PubMed  CAS  Google Scholar 

Boldrin L, Muntoni F, Morgan JE (2010) Are human and mouse satellite cells really the same?? J Histochem Cytochemistry 58(11):941–955. https://doi.org/10.1369/jhc.2010.956201

Article  CAS  Google Scholar 

Bombieri C, Corsi A, Trabetti E, Ruggiero A, Marchetto G, Vattemi G, Valenti MT, Zipeto D, Romanelli MG (2024) Advanced cellular models for rare disease study: exploring neural, muscle and skeletal organoids. International journal of molecular sciences, vol 25. Issue 2). Multidisciplinary Digital Publishing Institute (MDPI. https://doi.org/10.3390/ijms25021014

Bouche A, Borner B, Richard C, Grand Y, Hannouche D, Laumonier T (2023) In vitro-generated human muscle reserve cells are heterogeneous for Pax7 with distinct molecular States and metabolic profiles. Stem Cell Res Ther 14(1):243. https://doi.org/10.1186/s13287-023-03483-5

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bourlier V, Saint-Laurent C, Louche K, Badin P-M, Thalamas C, de Glisezinski I, Langin D, Sengenes C, Moro C (2013) Enhanced glucose metabolism is preserved in cultured primary myotubes from obese donors in response to exercise training. J Clin Endocrinol Metabolism 98(9):3739–3747. https://doi.org/10.1210/jc.2013-1727

Article  CAS  Google Scholar 

Breslin S, O’Driscoll L (2013) Three-dimensional cell culture: the missing link in drug discovery. Drug Discovery Today 18(5–6):240–249. https://doi.org/10.1016/j.drudis.2012.10.003

Article  PubMed  CAS  Google Scholar 

Brett JO, Arjona M, Ikeda M, Quarta M, de Morrée A, Egner IM, Perandini LA, Ishak HD, Goshayeshi A, Benjamin DI, Both P, Rodríguez-Mateo C, Betley MJ, Wyss-Coray T, Rando TA (2020) Exercise rejuvenates quiescent skeletal muscle stem cells in old mice through restoration of Cyclin D1. Nat Metabolism 2(4):307–317. https://doi.org/10.1038/s42255-020-0190-0

Article  CAS  Google Scholar 

Brzeszczyńska J, Meyer A, McGregor R, Schilb A, Degen S, Tadini V, Johns N, Langen R, Schols A, Glass DJ, Roubenoff R, Ross JA, Fearon KCH, Greig CA, Jacobi C (2018) Alterations in the in vitro and in vivo regulation of muscle regeneration in healthy ageing and the influence of sarcopenia. J Cachexia Sarcopenia Muscle 9(1):93–105. https://doi.org/10.1002/jcsm.12252

Article  PubMed  Google Scholar 

Burton MA, Garratt ES, Hewitt MO, Sharkh HY, Antoun E, Westbury LD, Dennison EM, Harvey NC, Cooper C, MacIsaac JL, Kobor MS, Patel HP, Godfrey KM, Lillycrop KA (2023) DNA methylation of insulin signaling pathways is associated with HOMA2-IR in primary myoblasts from older adults. Skelet Muscle 13(1):17. https://doi.org/10.1186/s13395-023-00326-y

Article  PubMed  PubMed Central  CAS  Google Scholar 

Catteau M, Gouzi F, Blervaque L, Passerieux E, Blaquière M, Ayoub B, Bughin F, Mercier J, Hayot M, Pomiès P (2020) Effects of a human microenv

Comments (0)

No login
gif