Enriquez-Sarano M, Tajik AJ, Schaff HV, Orszulak TA, Bailey KR, Frye RL (1994) Echocardiographic prediction of survival after surgical correction of organic mitral regurgitation. Circulation 90(2):830–837
Article CAS PubMed Google Scholar
Schreiber TL, Fisher J, Mangla A, Miller D (1989) Severe “silent” mitral regurgitation. A potentially reversible cause of refractory heart failure. Chest 96(2):242–246
Article CAS PubMed Google Scholar
Schaff HV (2009) Asymptomatic severe mitral valve regurgitation: observation or operation? Circulation 119(6):768–769
Maganti K, Rigolin VH, Sarano ME, Bonow RO (2010) Valvular heart disease: diagnosis and management. Mayo Clin Proc 85(5):483–500
Article PubMed PubMed Central Google Scholar
Kwon JM, Kim KH, Akkus Z, Jeon KH, Park J, Oh BH (2020) Artificial intelligence for detecting mitral regurgitation using electrocardiography. J Electrocardiol 59:151–157
Hirota N, Suzuki S, Arita T, Yagi N, Otsuka T, Yamashita T (2021) Prediction of biological age and all-cause mortality by 12-lead electrocardiogram in patients without structural heart disease. BMC Geriatr 21(1):460
Article PubMed PubMed Central Google Scholar
Suzuki S, Yamashita T, Otsuka T, Sagara K, Uejima T, Oikawa Y, Yajima J, Koike A, Nagashima K, Kirigaya H, Ogasawara K, Sawada H, Aizawa T (2011) Recent mortality of Japanese patients with atrial fibrillation in an urban city of Tokyo. J Cardiol 58(2):116–123
Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA, Hahn RT, Han Y, Hung J, Lang RM, Little SH, Shah DJ, Shernan S, Thavendiranathan P, Thomas JD, Weissman NJ (2017) Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the american society of echocardiography developed in collaboration with the society for cardiovascular magnetic resonance. J Am Soc Echocardiogr 30(4):303–371
Suzuki S, Yamashita T, Otsuka T, Arita T, Yagi N, Kishi M, Semba H, Kano H, Matsuno S, Kato Y, Uejima T, Oikawa Y, Matsuhama M, Iida M, Inoue T, Yajima J (2021) Identifying risk patterns in older adults with atrial fibrillation by hierarchical cluster analysis: a retrospective approach based on the risk probability for clinical events. Int J Cardiol Heart Vasc 37:100883
PubMed PubMed Central Google Scholar
Baecker L, Garcia-Dias R, Vieira S, Scarpazza C, Mechelli A (2021) Machine learning for brain age prediction: introduction to methods and clinical applications. EBioMedicine 72:103600
Article PubMed PubMed Central Google Scholar
Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh AJ, Gersh BJ, Carter RE, Yao X, Rabinstein AA, Erickson BJ, Kapa S, Friedman PA (2019) An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet 394(10201):861–867
Suzuki S, Motogi J, Nakai H, Matsuzawa W, Takayanagi T, Umemoto T, Hirota N, Hyodo A, Satoh K, Otsuka T, Arita T, Yagi N, Yamashita T (2022) Identifying patients with atrial fibrillation during sinus rhythm on ECG: significance of the labeling in the artificial intelligence algorithm. Int J Cardiol Heart Vasc 38:100954
PubMed PubMed Central Google Scholar
Hirota N, Suzuki S, Motogi J, Nakai H, Matsuzawa W, Takayanagi T, Umemoto T, Hyodo A, Satoh K, Arita T, Yagi N, Otsuka T, Yamashita T (2023) Cardiovascular events and artificial intelligence-predicted age using 12-lead electrocardiograms. Int J Cardiol Heart Vasc 44:101172
PubMed PubMed Central Google Scholar
Nagi J, Ducatelle F, Di Caro A, Ciresan D, Meier U, Giusti A, Nagi F, Schmidhuber J, Gambardella M (2011) Max-pooling convolutional neural networks for vision-based hand gesture recognition. In: IEEE international conference on signal and image processing applications, Kuala Lumpur, pp 342–347
He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. arXiv pre-print server
Coffin M, Sukhatme S (1997) Receiver operating characteristic studies and measurement errors. Biometrics 53(3):823–837
Article CAS PubMed Google Scholar
Gruwez H, Barthels M, Haemers P, Verbrugge FH, Dhont S, Meekers E, Wouters F, Nuyens D, Pison L, Vandervoort P, Pierlet N (2023) Detecting paroxysmal atrial fibrillation from an electrocardiogram in sinus rhythm: external validation of the AI approach. JACC Clin Electrophysiol 9:1771–1782
Attia IZ, Tseng AS, Benavente ED, Medina-Inojosa JR, Clark TG, Malyutina S, Kapa S, Schirmer H, Kudryavtsev AV, Noseworthy PA, Carter RE, Ryabikov A, Perel P, Friedman PA, Leon DA, Lopez-Jimenez F (2021) External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction. Int J Cardiol 329:130–135
Article PubMed PubMed Central Google Scholar
Adedinsewo D, Carter RE, Attia Z, Johnson P, Kashou AH, Dugan JL, Albus M, Sheele JM, Bellolio F, Friedman PA, Lopez-Jimenez F, Noseworthy PA (2020) Artificial intelligence-enabled ECG algorithm to identify patients with left ventricular systolic dysfunction presenting to the emergency department with dyspnea. Circ Arrhythm Electrophysiol 13(8):e008437
Article CAS PubMed Google Scholar
Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satem G, Pellikka PA, Enriquez-Sarano M, Noseworthy PA, Munger TM, Asirvatham SJ, Scott CG, Carter RE, Friedman PA (2019) Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med 25(1):70–74
Article CAS PubMed Google Scholar
Hirota N, Suzuki S, Motogi J, Umemoto T, Nakai H, Matsuzawa W, Takayanagi T, Hyodo A, Satoh K, Arita T, Yagi N, Kishi M, Semba H, Kano H, Matsuno S, Kato Y, Otsuka T, Uejima T, Oikawa Y, Hori T, Matsuhama M, Iida M, Yajima J, Yamashita T (2024) Evaluating convolutional neural network-enhanced electrocardiography for hypertrophic cardiomyopathy detection in a specialized cardiovascular setting. Heart Vessels 39(6):524–538
Maanja M, Noseworthy PA, Geske JB, Ackerman MJ, Arruda-Olson AM, Ommen SR, Attia ZI, Friedman PA, Siontis KC (2022) Tandem deep learning and logistic regression models to optimize hypertrophic cardiomyopathy detection in routine clinical practice. Cardiovasc Digit Health J 3(6):289–296
Article PubMed PubMed Central Google Scholar
Siontis KC, Liu K, Bos JM, Attia ZI, Cohen-Shelly M, Arruda-Olson AM, Zanjirani Farahani N, Friedman PA, Noseworthy PA, Ackerman MJ (2021) Detection of hypertrophic cardiomyopathy by an artificial intelligence electrocardiogram in children and adolescents. Int J Cardiol 340:42–47
Arita T, Suzuki S, Motogi J, Umemoto T, Hirota N, Nakai H, Matsuzawa W, Takayanagi T, Hyodo A, Satoh K, Yagi N, Otsuka T, Kishi M, Kano H, Matsuno S, Kato Y, Uejima T, Oikawa Y, Hori T, Matsuhama M, Iida M, Yajima J, Yamashita T (2024) Identifying patients with acute aortic dissection using an electrocardiogram with convolutional neural network. Int J Cardiol Heart Vasc 51:101389
Comments (0)