Improving culture conditions for conservation of antarctic mosses

Ahmed GU, Chang YD, Lee CH (2010) Factors affecting vitro gametophyte formation from spore culture of four moss species. 원예과학기술지, 28(1), 108–114.

Alavilli H, Lee H, Park M, Lee BH (2017) Antarctic moss multiprotein bridging factor 1c overexpression in Arabidopsis resulted in enhanced tolerance to salt stress. Front Plant Sci 8:1206. https://doi.org/10.3389/fpls.2017.01206

Article  PubMed  PubMed Central  Google Scholar 

Beike AK, Spagnuolo V, Lüth V, Steinhart F, Ramos-Gómez J, Krebs M, ... & Reski R (2015) Clonal in vitro propagation of peat mosses (Sphagnum L.) as novel green resources for basic and applied research. Plant Cell, Tissue and Organ Culture (PCTOC), 120, 1037–1049. https://doi.org/10.1007/s11240-014-0658-2

Bell NE, Hyvönen J (2010) A phylogenetic circumscription of Polytrichastrum (Polytrichaceae): reassessment of sporophyte morphology supports molecular phylogeny. Am J Bot 97(4):566–578. https://doi.org/10.3732/ajb.0900161

Article  PubMed  Google Scholar 

Byun MY, Seo S, Lee J, Yoo YH & Lee H (2021) Transfection of Arctic Bryum sp. KMR5045 as a Model for Genetic Engineering of Cold-Tolerant Mosses. Frontiers in Plant Science 11:609847. https://doi.org/10.3389/fpls.2020.609847

Câmara PE, Soares AE, Henriques DK, Peralta DF, Bordin J, Carvalho-Silva M, & Stech M (2019) New insights into the species diversity of Bartramia Hedw.(Bryophyta) in Antarctica. Antarctic Science 31(4):208–215. https://doi.org/10.1017/S0954102019000257

Cannone N, Dalle Fratte M, Convey P, Worland MR, Guglielmin M (2017) Ecology of moss banks on Signy Island (maritime Antarctic). Bot J Linn Soc 184(4):518–533. https://doi.org/10.1093/botlinnean/box040

Article  Google Scholar 

Cannone N, Vanetti I, Convey P, Sancho LG & Zaccara S (2024). Molecular analyses support revision of species diversity of the moss genus Bryum in Antarctica. Botanical Journal of the Linnean Society, boad070. https://doi.org/10.1093/botlinnean/boad070

Carvalho CR, Ferreira MC, Gonçalves VN, de Oliveira Santos AR, Silva MC, Câmara PEAS, ... & Rosa LH (2020) Cultivable fungi associated with bryosphere of bipolar mosses Polytrichastrum alpinum and Polytrichum juniperinum in King George Island, South Shetland Islands, Maritime Antarctica. Polar biology.

Casanova-Katny A, Torres-Mellado GA, Eppley SM (2016) Reproductive output of mosses under experimental warming on Fildes Peninsula, King George Island, maritime Antarctica. Rev Chil Hist Nat 89:1–9

Article  Google Scholar 

Colesie C, Walshaw CV, Sancho LG, Davey MP, Gray A (2023) Antarctica’s vegetation in a changing climate. Wiley Interdisciplinary Rev Climate Change 14(1):e810. https://doi.org/10.1002/wcc.810

Article  Google Scholar 

Convey P, Chown SL, Clarke A, Barnes DK, Bokhorst S, Cummings V, ... & Wall DH (2014) The spatial structure of Antarctic biodiversity. Ecological monographs 84(2):203–244. https://doi.org/10.1890/12-2216.1

Convey P, Peck LS (2019) Antarctic environmental change and biological responses. Sci Adv 5(11):eaaz0888. https://doi.org/10.1126/sciadv.aaz0888

Cove D (1996) In vitro culture, mutant selection, genetic analysis and transformation of Physcomitrella patens. In: Lindsey, K. (eds) Plant Tissue Culture Manual. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0103-2_50

Cove DJ, Perroud PF, Charron AJ, McDaniel SF, Khandelwal A, & Quatrano RS (2009) The moss Physcomitrella patens: a novel model system for plant development and genomic studies. Cold Spring Harbor Protocols, 2009a, pdbemo115. https://doi.org/10.1101/pdb.emo115

Cuba-Díaz M, Rivera-Mora C, Navarrete E, Klagges M (2020) Advances of native and non-native Antarctic species to in vitro conservation: improvement of disinfection protocols. Sci Rep 10(1):3845. https://doi.org/10.1038/s41598020-60533-1

Article  PubMed  PubMed Central  Google Scholar 

Fedosov VE, Fedorova AV, Troitsky AV, Bobrova VK, & Ignatov MS (2016) On the systematic position of Hymenoloma (Bryophyta). Arctoa 25(1):119–130. https://doi.org/10.15298/arctoa.25.10

Folgar-Cameán Y, Barták M (2019) Evaluation of photosynthetic processes in Antarctic mosses and lichens exposed to controlled rate cooling: Species-specific responses. Czech Polar Reports 9(1):114–124. https://doi.org/10.5817/CPR2019-110

Article  Google Scholar 

Gemal EL, Green TA, Cary SC, Colesie C (2022) High resilience and fast acclimation processes allow the Antarctic moss Bryum argenteum to increase its carbon gain in warmer growing conditions. Biology 11(12):1773

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giordano D (2020) Bioactive molecules from extreme environments. Mar Drugs 18(12):640. https://doi.org/10.3390/md18120640

Article  PubMed  PubMed Central  Google Scholar 

Heck MA, Lüth VM, van Gessel N, Krebs M, Kohl M, Prager A, ... & Reski R (2021a) Axenic in vitro cultivation of 19 peat moss (Sphagnum L.) species as a resource for basic biology, biotechnology, and paludiculture. New Phytologist 229(2):861–876. https://doi.org/10.1111/nph.16922

Heck MA, Melková I, Posten C, Decker EL, Reski R (2021b) Medium optimization for biomass production of three peat moss (Sphagnum L.) species using fractional factorial design and response surface methodology. Bioresource Technology Reports 15:100729. https://doi.org/10.1016/j.biteb.2021.100729

Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Article  CAS  Google Scholar 

Ochyra R, Bednarek-Ochyra H, Smith RIL (2008) Illustrated moss flora of Antarctica. Cambridge University Press

Google Scholar 

Pannewitz S, Green TA, Maysek K, Schlensog M, Seppelt R, Sancho LG, ... & Schroeter B (2005) Photosynthetic responses of three common mosses from continental Antarctica. Antarctic Science 17(3):341–352.

Perera-Castro AV, Waterman MJ, Turnbull JD, Ashcroft MB, McKinley E, Watling JR, ...Robinson SA (2020) It is hot in the sun: Antarctic mosses have high temperature optima for photosynthesis despite cold climate. Frontiers in Plant Science 11:1178. 10.3389%2Ffpls.2020.01178

Phillips GC, Garda M (2019) Plant tissue culture media and practices: an overview. In Vitro Cell Dev Biology-Plant 55:242–257. https://doi.org/10.1007/s11627-019-09983-5

Article  Google Scholar 

Reski R, Abel WO (1985) Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine. Planta 165:354–358. https://doi.org/10.1007/bf00392232

Article  CAS  PubMed  Google Scholar 

Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409(6823):1092–1101. https://doi.org/10.1038/35059215

Article  CAS  PubMed  Google Scholar 

Ruiz-Molina N, Villalobos-López MÁ, Arias-Zabala M (2016) Protonema suspension cultures of the medicinal moss Polytrichum juniperinum. In Vitro Cell Dev Biology-Plant 52:419–426. https://doi.org/10.1080/10496475.2019.1577321

Article  CAS  Google Scholar 

Sabovljevic A, Sabovljevic M, Grubisic D, & Konjevic R (2005) The effect of sugars on development of two moss species (Bryum argenteum and Atrichum undulatum) during in vitro culture. Belgian J of Botany 79–84.

Sabovljević M, Vujičić M, Pantović J, Sabovljević A (2014) Bryophyte conservation biology: In vitro approach to the ex situ conservation of bryophytes from Europe. Plant Biosystems-an Int J Dealing All Aspects Plant Biology 148(4):857–868. https://doi.org/10.1080/11263504.2014.949328

Article  Google Scholar 

Sabovljević MS, Bijelović A, Dragićević IČ (2002) Effective and easy way of establishing in vitro culture of mosses, Bryum argenteum Hedw. and Bryum capillare Hedw.-Bryaceae. Archives of Biological Sciences 54(1–2):7–8.

Schmiedel G, Schnepf E (1980) Polarity and growth of caulonema tip cells of the moss Funaria hygrometrica. Planta 147:405–413. https://doi.org/10.1007/bf00380180

Article  CAS  PubMed  Google Scholar 

Schroeter B, Green TA, Pintado A, Türk R, Sancho LG (2021) Summer activity patterns for moss and lichen in the maritime Antarctic with respect to altitude. Polar Biol 44(11):2117–2137

Article  Google Scholar 

Schween G, Hohe A, Koprivova A, Reski R (2003) Effects of nutrients, cell density and culture techniques on protoplast regeneration and early protonema development in a moss, Physcomitrella patens. J Plant Physiol 160(2):209–212. https://doi.org/10.1078/0176-1617-00855

Article  CAS  PubMed  Google Scholar 

Shenghao L, Zhaohui Z, Nengfei W, Bailin C, Pengying Z, Xuezheng L, Xiaohang H (2014) Phylogenetic analysis and in vitro culture of mosses from the Antarctic Fildes Peninsula. Adv Polar Sci 25(2):97–104

Google Scholar 

Short SE, Zamorano M, Aranzaez-Ríos C, Lee-Estevez M, Díaz R, Quiñones J, ... Farías J (2024) Novel Apoplastic Antifreeze Proteins of Deschampsia antarctica as Enhancer of Common Cell Freezing Media for Cryobanking of Genetic Resources, a Preliminary Study. Biomolecules 14(2):174.https://doi.org/10.3390/biom14020174

Sitthichopthamid C, Wongkantrakornid N, Kraichakid E, Sanevasid N (2023) Effects of the culture medium, pH level, and type of sugar on the growth of Sphagnum cuspidatulum Müll. Hal. https://doi.org/10.7235/HORT.20230030

Article  Google Scholar 

Vargas MVMD, Minozzo MM, Pereira AB, Victoria FDC (2017) Growth and development of halophyte Funaria hygrometrica Hedw. (Funariaceae) under salt stress. Biosci. j. (Online) 1617–1621.

Victoria FDC, Oliveira ACD, Peters JA (2011) Establishment of the moss Polytrichum juniperinum Hedw. under axenic conditions. Biosci. j. (Online), 673–676.https://doi.org/10.14393/BJ-v33n6a2017-37184

Yin H, Perera-Castro AV, Randall KL, Turnbull JD, Waterman MJ, Dunn J, Robinson SA (2023) Basking in the sun: how mosses photosynthesise and survive in Antarctica. Photosynth Res 158(2):151–169. https://doi.org/10.1007/s11120-023-01040-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif