Aliu E, Ji Q, Wlazlo A, Grosic S, Azanu MK, Wang K, Lee K (2024) Enhancing Agrobacterium-mediated plant transformation efficiency through improved ternary vector systems and auxotrophic strains. Front Plant Sci 15:1429353. https://doi.org/10.3389/fpls.2024.1429353
Article PubMed PubMed Central Google Scholar
Anand A, Bass SH, Wu E, Wang N, McBride KE, Annaluru N, Miller M, Hua M, Jones TJ (2018) An improved ternary vector system for Agrobacterium-mediated rapid maize transformation. Plant Mol Biol 97:187–200. https://doi.org/10.1007/s11103-018-0732-y
Article CAS PubMed PubMed Central Google Scholar
Aregawi K, Shen J, Pierroz G, Sharma MK, Dahlberg J, Owiti J, Lemaux PG (2022) Morphogene-assisted transformation of Sorghum bicolor allows more efficient genome editing. Plant Biotechnol J 20:748–760. https://doi.org/10.1111/pbi.13754
Article CAS PubMed Google Scholar
Armstrong CL, Romero-Severson J, Hodges TK (1992) Improved tissue culture response of an elite maize inbred through backcross breeding, and identification of chromosomal regions important for regeneration by RFLP analysis. Theor Appl Genet 84:755–762. https://doi.org/10.1007/BF00224181
Article CAS PubMed Google Scholar
Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C-M, van Lammeren AAM, Miki BLA, Custers JBM, van LookerenCampagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749. https://doi.org/10.1105/tpc.001941
Article CAS PubMed PubMed Central Google Scholar
Busk PK, Jensen AB, Pagès M (1997) Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize. Plant J 11:1285–1295. https://doi.org/10.1046/j.1365-313X.1997.11061285.x
Article CAS PubMed Google Scholar
Che P, Wu E, Simon MK, Anand A, Lowe K, Gao H, Sigmund AK, Yang M, Albertsen MC, Gordon-Kamm W, Jones TJ (2022) Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum. Commun Biol 5:344. https://doi.org/10.1038/s42003-022-03308-w
Article CAS PubMed PubMed Central Google Scholar
Du D, Jin R, Guo J, Zhang F (2019) Infection of embryonic callus with Agrobacterium enables high-speed transformation of maize. Int J Mol Sci 20:279. https://doi.org/10.3390/ijms20020279
Article CAS PubMed PubMed Central Google Scholar
Frame BR, McMurray JM, Fonger TM, Main ML, Taylor KW, Torney FJ, Paz MM, Wang K (2006) Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts. Plant Cell Rep 25:1024–1034. https://doi.org/10.1007/s00299-006-0145-2
Article CAS PubMed Google Scholar
Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SEK, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22. https://doi.org/10.1104/pp.000653
Article CAS PubMed PubMed Central Google Scholar
Gordon-Kamm WJ, Spencer TM, Lou MM, Adams TR, Daines RJ, Start WG, O’Brien JV, Chambers SA, Adams WR, Willetts NG, Rice TB, MacKey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603. https://doi.org/10.2307/3869124
Article CAS PubMed PubMed Central Google Scholar
Gurel S, Gurel E, Kaur R, Wong J, Meng L, Tan H-Q, Lemaux PG (2009) Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep 28:429–444. https://doi.org/10.1007/s00299-008-0655-1
Article CAS PubMed Google Scholar
Hwang H-H, Wu ET, Liu S-Y, Chang S, Tzeng KC, Kado CI (2013) Characterization and host range of five tumorigenic Agrobacterium tumefaciens strains and possible application in plant transient transformation assays. Plant Pathol 62:1384–1397. https://doi.org/10.1111/ppa.12046
Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750. https://doi.org/10.1038/nbt0696-745
Article CAS PubMed Google Scholar
Kang M, Lee K, Finley T, Chappell H, Veena V, Wang K (2022) An improved Agrobacterium-mediated transformation and genome-editing method for maize inbred B104 using a ternary vector system and immature embryos. Front Plant Sci 13:860971. https://doi.org/10.3389/fpls.2022.860971
Article PubMed PubMed Central Google Scholar
Kang M, Lee K, Ji Q, Grosic S, Wang K (2023) Enhancing maize transformation and targeted mutagenesis through the assistance of non-integrating Wus2 vector. Plants 12:2799. https://doi.org/10.3390/plants12152799
Article CAS PubMed PubMed Central Google Scholar
Kausch AP, Wang K, Kaeppler HF, Gordon-Kamm W (2021) Maize transformation: history, progress, and perspectives. Mol Breed 41:38. https://doi.org/10.1007/s11032-021-01225-0
Article CAS PubMed PubMed Central Google Scholar
Komari T, Halperin W, Nester EW (1986) Physical and functional map of supervirulent Agrobacterium tumefaciens tumor-inducing plasmid pTiBo542. J Bacteriol 166:88–94. https://doi.org/10.1128/jb.166.1.88-94.1986
Article CAS PubMed PubMed Central Google Scholar
Lee K, Wang K (2023) Strategies for genotype-flexible plant transformation. Curr Opin Biotechnol 79:102848. https://doi.org/10.1016/j.copbio.2022.102848
Article CAS PubMed Google Scholar
Lin G, He C, Zheng J, Koo D-H, Le H, Zheng H, Tamang TM, Lin J, Liu Y, Zhao M, Hao Y, McFraland F, Wang B, Qin Y, Tang H, McCarty DR, Wei H, Cho M-J, Park S, Kaeppler H, Kaeppler SM, Liu Y, Springer N, Schnable PS, Wang G, White FF, Liu S (2021) Chromosome-level genome assembly of a regenerable maize inbred line A188. Genome Biol 22:175. https://doi.org/10.1186/s13059-021-02396-x
Article CAS PubMed PubMed Central Google Scholar
Lowe K, La Rota M, Hoerster G, Hastings C, Wang N, Chamberlin M, Wu E, Jones T, Gordon-Kamm W (2018) Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cell Dev Biol - Plant 54:240–252. https://doi.org/10.1007/s11627-018-9905-2
Article CAS PubMed PubMed Central Google Scholar
Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M-J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer P, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco C, Register J, Zhao Z-Y, Xu D, Jones T, Gordon-Kamm W (2016) Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28:1998–2015. https://doi.org/10.1105/tpc.16.00124
Article CAS PubMed PubMed Central Google Scholar
Maren NA, Duan H, Da K, Yencho GC, Ranney TG, Liu W (2022) Genotype-independent plant transformation. Hortic Res 9:uhac047. https://doi.org/10.1093/hr/uhac047
Article CAS PubMed PubMed Central Google Scholar
Masters A, Kang M, McCaw M, Zobrist JD, Gordon-Kamm W, Jones T, Wang K (2020) Agrobacterium-mediated immature embryo transformation of recalcitrant maize inbred lines using morphogenic genes. J vis Exp 156:e60782. https://doi.org/10.3791/60782
Mookkan M, Nelson-Vasilchik K, Hague J, Kausch A, Zhang ZJ. (2018) Morphogenic regulator-mediated transformation of maize inbred B73. Curr Protoc Plant Biol. e20075. https://doi.org/10.1002/cppb.20075
Oestreich DC (1995) Inbred corn line PHR03. United States Patent 5,436,390. https://patents.google.com/patent/US5436390A/en. Accessed 25 July 1995
Quattrone A, Lopez-Guerrero M, Yadav P, Meier MA, Russo SE, Weber KA (2024) Interactions between root hairs and the soil microbial community affect the growth of maize seedlings. Plant Cell Environ 47:611–628. https://doi.org/10.1111/pce.14755
Comments (0)