Akyuz E, Polat AK, Eroglu E, Kullu I, Angelopoulou E, Paudel YN (2021) Revisiting the role of neurotransmitters in epilepsy: An updated review. Life Sci 265:118826. https://doi.org/10.1016/j.lfs.2020.118826
Article CAS PubMed Google Scholar
Andersen JV, Schousboe A (2023) Milestone Review: Metabolic dynamics of glutamate and GABA mediated neurotransmission—The essential roles of astrocytes. J Neurochem 166:109–137. https://doi.org/10.1111/jnc.15811
Article CAS PubMed Google Scholar
Arora I, Mal P, Arora P, Paul A, Kumar M (2024) GABAergic implications in anxiety and related disorders. Biochem Biophys Res Commun 3:150218. https://doi.org/10.1016/j.bbrc.2024.150218
Badawy AA (2017) Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int J Tryptophan Res 10:1178646917691938. https://doi.org/10.1177/1178646917691938
Article CAS PubMed PubMed Central Google Scholar
Badawy AA (2020) Kynurenine pathway and human systems. Exp Gerontol 129:110770. https://doi.org/10.1016/j.exger.2019.110770
Article CAS PubMed Google Scholar
Badawy AA (2019) Tryptophan metabolism: a versatile area providing multiple targets for pharmacological intervention. Egyptian J Basic Clinical Pharmacol https://doi.org/10.32527/2019/101415
Barzegar M, Afghan M, Tarmahi V, Behtari M, Rahimi Khamaneh S, Raeisi S (2021) Ketogenic diet: overview, types, and possible anti-seizure mechanisms. Nutr Neurosci 24:307–316. https://doi.org/10.1080/1028415X.2019.1627769
Article CAS PubMed Google Scholar
Becker AJ (2018) Animal models of acquired epilepsy: insights into mechanisms of human epileptogenesis. Neuropathol Appl Neurobiol 44:112–129. https://doi.org/10.1111/nan.12451
Article CAS PubMed Google Scholar
Boros FA, Vécsei L (2019) Immunomodulatory effects of genetic alterations affecting the kynurenine pathway. Front Immunol 10:2570. https://doi.org/10.3389/fimmu.2019.02570
Article CAS PubMed PubMed Central Google Scholar
Boros FA, Vécsei L (2021) Tryptophan 2, 3-dioxygenase, a novel therapeutic target for Parkinson’s disease. Expert Opin Ther Targets 25:877–888. https://doi.org/10.1080/14728222.2021.1999928
Article CAS PubMed Google Scholar
Botting NP (1995) Chemistry and neurochemistry of the kynurenine pathway of tryptophan metabolism. Chem Soc Rev 24:401–412. https://doi.org/10.1039/CS9952400401
Bough K (2008) Energy metabolism as part of the anticonvulsant mechanism of the ketogenic diet. Epilepsia 49:91–93. https://doi.org/10.1111/j.1528-1167.2008.01846.x
Article PubMed PubMed Central Google Scholar
Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T, Grant R, Sachdev P (2019) Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: rationale, biochemistry, pharmacokinetics, and outcomes. Antioxid Redox Signal 30:251–294. https://doi.org/10.1089/ars.2017.7269
Article CAS PubMed Google Scholar
Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH (2013) Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 14:1–9. https://doi.org/10.1186/1471-2121-14-32
Can U, Marzioglu E, Akdu S (2022) Some miRNA expressions and their targets in ischemic stroke. Nucleosides, Nucleotides Nucleic Acids 41:1224–1262. https://doi.org/10.1080/15257770.2022.2098974
Article CAS PubMed Google Scholar
Cano A, Fonseca E, Ettcheto M, Sánchez-López E, de Rojas I, Alonso-Lana S, Morato X, Souto EB, Toledo M, Boada M, Marquie M (2021) Epilepsy in neurodegenerative diseases: related drugs and molecular pathways. Pharmaceuticals 14:1057. https://doi.org/10.3390/ph14101057
Article CAS PubMed PubMed Central Google Scholar
Carriero G, Arcieri S, Cattalini A, Corsi L, Gnatkovsky V, de Curtis M (2012) A guinea pig model of mesial temporal lobe epilepsy following nonconvulsive status epilepticus induced by unilateral intrahippocampal injection of kainic acid. Epilepsia 53:1917–1927. https://doi.org/10.1111/j.1528-1167.2012.03669.x
Article CAS PubMed Google Scholar
Castro-Portuguez R, Sutphin GL (2020) Kynurenine pathway, NAD+ synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp Gerontol 132:110841. https://doi.org/10.1016/j.exger.2020.110841
Article CAS PubMed PubMed Central Google Scholar
Cervenka I, Agudelo LZ, Ruas JL (2017) Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science 357(6349):eaaf9794. https://doi.org/10.1126/science.aaf9794
Article CAS PubMed Google Scholar
Chen L, Niu Q, Gao C, Du F (2023a) Celecoxib treatment alleviates cerebral injury in a rat model of post-traumatic epilepsy. PeerJ 11:e16555. https://doi.org/10.7717/peerj.16555
Article CAS PubMed PubMed Central Google Scholar
Chen TS, Huang TH, Lai MC, Huang CW (2023b) The role of glutamate receptors in epilepsy. Biomedicines 11:783. https://doi.org/10.3390/biomedicines11030783
Article CAS PubMed PubMed Central Google Scholar
Chen X, Xu D, Yu J, Song XJ, Li X, Cui YL (2024) Tryptophan Metabolism Disorder-Triggered Diseases, Mechanisms, and Therapeutic Strategies: A Scientometric Review. Nutrients 16:3380. https://doi.org/10.3390/nu16193380
Article CAS PubMed PubMed Central Google Scholar
Cherubini E, Di Cristo G, Avoli M (2022) Dysregulation of GABAergic signaling in neurodevelomental disorders: targeting cation-chloride co-transporters to re-establish a proper E/I balance. Front Cell Neurosci 15:813441. https://doi.org/10.3389/fncel.2021.813441
Article CAS PubMed PubMed Central Google Scholar
Cockhill J, Jhamandas K, Boegman RJ, Beninger RJ (1992) Action of picolinic acid and structurally related pyridine carboxylic acids on quinolinic acid-induced cortical cholinergic damage. Brain Res 18(599):57–63. https://doi.org/10.1016/0006-8993(92)90852-Z
Davis I, Liu A (2015) What is the tryptophan kynurenine pathway and why is it important to neurotherapeutics? Expert Rev Neurotherapeutics 15(7):719–721. https://doi.org/10.1586/14737175.2015.1049999
Deng N, Hu J, Hong Y, Ding Y, Xiong Y, Wu Z, Xie W (2021) Indoleamine-2, 3-dioxygenase 1 deficiency suppresses seizures in epilepsy. Front Cell Neurosci 15:638854. https://doi.org/10.3389/fncel.2021.638854
Article CAS PubMed PubMed Central Google Scholar
Dey S, Banerjee Dixit A, Tripathi M, Doddamani RS, Sharma MC, Lalwani S, Chandra PS, Banerjee J (2021) Altered hippocampal kynurenine pathway metabolism contributes to hyperexcitability in human mesial temporal lobe epilepsy–hippocampal sclerosis. Br J Pharmacol 178:3959–3976. https://doi.org/10.1111/bph.15534
Article CAS PubMed Google Scholar
Dey S, Dubey V, Dixit AB, Tripathi M, Chandra PS, Banerjee J (2022) Differential levels of tryptophan–kynurenine pathway metabolites in the hippocampus, anterior temporal lobe, and neocortex in an animal model of temporal lobe epilepsy. Cells 11:3560. https://doi.org/10.3390/cells11223560
Article CAS PubMed PubMed Central Google Scholar
Di Nottia M, Verrigni D, Torraco A, Rizza T, Bertini E, Carrozzo R (2021) Mitochondrial dynamics: molecular mechanisms, related primary mitochondrial disorders and therapeutic approaches. Genes 12:247.
Comments (0)