Kynurenine Pathway in Epilepsy: Unraveling Its Role in Glutamate Excitotoxicity, GABAergic Dysregulation, Neuroinflammation, and Mitochondrial Dysfunction

Akyuz E, Polat AK, Eroglu E, Kullu I, Angelopoulou E, Paudel YN (2021) Revisiting the role of neurotransmitters in epilepsy: An updated review. Life Sci 265:118826. https://doi.org/10.1016/j.lfs.2020.118826

Article  CAS  PubMed  Google Scholar 

Andersen JV, Schousboe A (2023) Milestone Review: Metabolic dynamics of glutamate and GABA mediated neurotransmission—The essential roles of astrocytes. J Neurochem 166:109–137. https://doi.org/10.1111/jnc.15811

Article  CAS  PubMed  Google Scholar 

Arora I, Mal P, Arora P, Paul A, Kumar M (2024) GABAergic implications in anxiety and related disorders. Biochem Biophys Res Commun 3:150218. https://doi.org/10.1016/j.bbrc.2024.150218

Article  CAS  Google Scholar 

Badawy AA (2017) Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int J Tryptophan Res 10:1178646917691938. https://doi.org/10.1177/1178646917691938

Article  CAS  PubMed  PubMed Central  Google Scholar 

Badawy AA (2020) Kynurenine pathway and human systems. Exp Gerontol 129:110770. https://doi.org/10.1016/j.exger.2019.110770

Article  CAS  PubMed  Google Scholar 

Badawy AA (2019) Tryptophan metabolism: a versatile area providing multiple targets for pharmacological intervention. Egyptian J Basic Clinical Pharmacol https://doi.org/10.32527/2019/101415

Barzegar M, Afghan M, Tarmahi V, Behtari M, Rahimi Khamaneh S, Raeisi S (2021) Ketogenic diet: overview, types, and possible anti-seizure mechanisms. Nutr Neurosci 24:307–316. https://doi.org/10.1080/1028415X.2019.1627769

Article  CAS  PubMed  Google Scholar 

Becker AJ (2018) Animal models of acquired epilepsy: insights into mechanisms of human epileptogenesis. Neuropathol Appl Neurobiol 44:112–129. https://doi.org/10.1111/nan.12451

Article  CAS  PubMed  Google Scholar 

Boros FA, Vécsei L (2019) Immunomodulatory effects of genetic alterations affecting the kynurenine pathway. Front Immunol 10:2570. https://doi.org/10.3389/fimmu.2019.02570

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boros FA, Vécsei L (2021) Tryptophan 2, 3-dioxygenase, a novel therapeutic target for Parkinson’s disease. Expert Opin Ther Targets 25:877–888. https://doi.org/10.1080/14728222.2021.1999928

Article  CAS  PubMed  Google Scholar 

Botting NP (1995) Chemistry and neurochemistry of the kynurenine pathway of tryptophan metabolism. Chem Soc Rev 24:401–412. https://doi.org/10.1039/CS9952400401

Article  CAS  Google Scholar 

Bough K (2008) Energy metabolism as part of the anticonvulsant mechanism of the ketogenic diet. Epilepsia 49:91–93. https://doi.org/10.1111/j.1528-1167.2008.01846.x

Article  PubMed  PubMed Central  Google Scholar 

Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T, Grant R, Sachdev P (2019) Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: rationale, biochemistry, pharmacokinetics, and outcomes. Antioxid Redox Signal 30:251–294. https://doi.org/10.1089/ars.2017.7269

Article  CAS  PubMed  Google Scholar 

Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH (2013) Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 14:1–9. https://doi.org/10.1186/1471-2121-14-32

Article  CAS  Google Scholar 

Can U, Marzioglu E, Akdu S (2022) Some miRNA expressions and their targets in ischemic stroke. Nucleosides, Nucleotides Nucleic Acids 41:1224–1262. https://doi.org/10.1080/15257770.2022.2098974

Article  CAS  PubMed  Google Scholar 

Cano A, Fonseca E, Ettcheto M, Sánchez-López E, de Rojas I, Alonso-Lana S, Morato X, Souto EB, Toledo M, Boada M, Marquie M (2021) Epilepsy in neurodegenerative diseases: related drugs and molecular pathways. Pharmaceuticals 14:1057. https://doi.org/10.3390/ph14101057

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carriero G, Arcieri S, Cattalini A, Corsi L, Gnatkovsky V, de Curtis M (2012) A guinea pig model of mesial temporal lobe epilepsy following nonconvulsive status epilepticus induced by unilateral intrahippocampal injection of kainic acid. Epilepsia 53:1917–1927. https://doi.org/10.1111/j.1528-1167.2012.03669.x

Article  CAS  PubMed  Google Scholar 

Castro-Portuguez R, Sutphin GL (2020) Kynurenine pathway, NAD+ synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp Gerontol 132:110841. https://doi.org/10.1016/j.exger.2020.110841

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cervenka I, Agudelo LZ, Ruas JL (2017) Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science 357(6349):eaaf9794. https://doi.org/10.1126/science.aaf9794

Article  CAS  PubMed  Google Scholar 

Chen L, Niu Q, Gao C, Du F (2023a) Celecoxib treatment alleviates cerebral injury in a rat model of post-traumatic epilepsy. PeerJ 11:e16555. https://doi.org/10.7717/peerj.16555

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen TS, Huang TH, Lai MC, Huang CW (2023b) The role of glutamate receptors in epilepsy. Biomedicines 11:783. https://doi.org/10.3390/biomedicines11030783

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X, Xu D, Yu J, Song XJ, Li X, Cui YL (2024) Tryptophan Metabolism Disorder-Triggered Diseases, Mechanisms, and Therapeutic Strategies: A Scientometric Review. Nutrients 16:3380. https://doi.org/10.3390/nu16193380

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cherubini E, Di Cristo G, Avoli M (2022) Dysregulation of GABAergic signaling in neurodevelomental disorders: targeting cation-chloride co-transporters to re-establish a proper E/I balance. Front Cell Neurosci 15:813441. https://doi.org/10.3389/fncel.2021.813441

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cockhill J, Jhamandas K, Boegman RJ, Beninger RJ (1992) Action of picolinic acid and structurally related pyridine carboxylic acids on quinolinic acid-induced cortical cholinergic damage. Brain Res 18(599):57–63. https://doi.org/10.1016/0006-8993(92)90852-Z

Article  Google Scholar 

Davis I, Liu A (2015) What is the tryptophan kynurenine pathway and why is it important to neurotherapeutics? Expert Rev Neurotherapeutics 15(7):719–721. https://doi.org/10.1586/14737175.2015.1049999

Article  CAS  Google Scholar 

Deng N, Hu J, Hong Y, Ding Y, Xiong Y, Wu Z, Xie W (2021) Indoleamine-2, 3-dioxygenase 1 deficiency suppresses seizures in epilepsy. Front Cell Neurosci 15:638854. https://doi.org/10.3389/fncel.2021.638854

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dey S, Banerjee Dixit A, Tripathi M, Doddamani RS, Sharma MC, Lalwani S, Chandra PS, Banerjee J (2021) Altered hippocampal kynurenine pathway metabolism contributes to hyperexcitability in human mesial temporal lobe epilepsy–hippocampal sclerosis. Br J Pharmacol 178:3959–3976. https://doi.org/10.1111/bph.15534

Article  CAS  PubMed  Google Scholar 

Dey S, Dubey V, Dixit AB, Tripathi M, Chandra PS, Banerjee J (2022) Differential levels of tryptophan–kynurenine pathway metabolites in the hippocampus, anterior temporal lobe, and neocortex in an animal model of temporal lobe epilepsy. Cells 11:3560. https://doi.org/10.3390/cells11223560

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Nottia M, Verrigni D, Torraco A, Rizza T, Bertini E, Carrozzo R (2021) Mitochondrial dynamics: molecular mechanisms, related primary mitochondrial disorders and therapeutic approaches. Genes 12:247.

Comments (0)

No login
gif