*Adleman, N. E., Menon, V., Blasey, C. M., White, C. D., Warsofsky, I. S., Glover, G. H., & Reiss, A. L. (2002). A developmental fMRI study of the Stroop color-word task. Neuroimage, 16(1), 61–75. https://doi.org/10.1006/nimg.2001.1046
**Agostini, A., Ballotta, D., Righi, S., Moretti, M., Bertani, A., Scarcelli, A., Sartini, A., Ercolani, M., Nichelli, P., Campieri, M., & Benuzzi, F. (2017). Stress and brain functional changes in patients with Crohn’s disease: A functional magnetic resonance imaging study. Neurogastroenterology and Motility, 29(10), 1–10. https://doi.org/10.1111/nmo.13108
Algom, D., Chajut, E., & Lev, S. (2004). A rational look at the emotional Stroop phenomenon: A generic slowdown, not a Stroop effect. Journal of Experimental Psychology: General, 133(3), 323–338. https://doi.org/10.1037/0096-3445.133.3.323
Algom, D., Fitousi, D., & Chajut, E. (2022). Can the Stroop effect serve as the gold standard of conflict monitoring and control? A conceptual critique. Memory and Cognition, 50(5), 883–897. https://doi.org/10.3758/s13421-021-01251-5
**Almdahl, I. S., Martinussen, L. J., Agartz, I., Hugdahl, K., & Korsnes, M. S. (2021). Inhibition of emotions in healthy aging: Age-related differences in brain network connectivity. Brain and Behavior, 11(5), e02052. https://doi.org/10.1002/brb3.2052
**Ansari, D., Fugelsang, J. A., Dhital, B., & Venkatraman, V. (2006). Dissociating response conflict from numerical magnitude processing in the brain: An event-related fMRI study. Neuroimage, 32(2), 799–805. https://doi.org/10.1016/j.neuroimage.2006.04.184
Appelbaum, M., Cooper, H., Kline, R. B., Mayo-Wilson, E., Nezu, A. M., & Rao, S. M. (2018). Journal article reporting standards for quantitative research in psychology: The APA Publications and Communications Board task force report. American Psychologist, 73(1), 3–25. https://doi.org/10.1037/amp0000191
Assem, M., Shashidhara, S., Glasser, M. F., & Duncan, J. (2022). Precise topology of adjacent domain-general and sensory-biased regions in the human brain. Cerebral Cortex, 32(12), 2521–2537. https://doi.org/10.1093/cercor/bhab362
Augustinova, M., Parris, B. A., & Ferrand, L. (2019). The loci of Stroop interference and facilitation effects with manual and vocal responses. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.01786
**Bang, L., Ro, O., & Endestad, T. (2016). Amygdala alterations during an emotional conflict task in women recovered from anorexia nervosa. Psychiatry Research Neuroimaging, 248, 126–133. https://doi.org/10.1016/j.pscychresns.2015.12.008
Banich, M. T. (2019). The Stroop effect occurs at multiple points along a cascade of control: Evidence from cognitive neuroscience approaches. Frontiers in Psychology, 10, 2164. https://doi.org/10.3389/fpsyg.2019.02164
Article PubMed PubMed Central Google Scholar
Banich, M. T., Milham, M. P., Atchley, R., Cohen, N. J., Webb, A., Wszalek, T., Kramer, A. F., Liang, Z. P., Wright, A., Shenker, J., & Magin, R. (2000). fMri studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection. Journal of Cognitive Neuroscience, 12(6), 988–1000. https://doi.org/10.1162/08989290051137521
Article CAS PubMed Google Scholar
*Banich, M. T., Milham, M. P., Jacobson, B. L., Webb, A., Wszalek, T., Cohen, N. J., & Kramer, A. F. (2001). Attentional selection and the processing of task-irrelevant information: Insights from fMRI examinations of the Stroop task. Progress in Brain Research, 134, 459–470. https://doi.org/10.1016/s0079-6123(01)34030-x
*Barkley-Levenson, E., Xue, F., Droutman, V., Miller, L. C., Smith, B. J., Jeong, D., Lu, Z. L., Bechara, A., & Read, S. J. (2018). Prefrontal cortical activity during the Stroop task: New insights into the why and the who of real-world risky sexual behavior. Annals of Behavioral Medicine, 52(5), 367–379. https://doi.org/10.1093/abm/kax019
**Basten, U., Stelzel, C., & Fiebach, C. J. (2011). Trait anxiety modulates the neural efficiency of inhibitory control. Journal of Cognitive Neuroscience, 23(10), 3132–3145. https://doi.org/10.1162/jocn_a_00003
**Bayer, M., Rubens, M. T., & Johnstone, T. (2018). Simultaneous EEG-fMRI reveals attention-dependent coupling of early face processing with a distributed cortical network. Biological Psychology, 132, 133–142. https://doi.org/10.1016/j.biopsycho.2017.12.002
**Becker, T. M., Kerns, J. G., Macdonald, A. W., 3rd, & Carter, C. S. (2008). Prefrontal dysfunction in first-degree relatives of schizophrenia patients during a Stroop task. Neuropsychopharmacology, 33(11), 2619–2625. https://doi.org/10.1038/sj.npp.1301673
**Bench, C. J., Frith, C. D., Grasby, P. M., Friston, K. J., Paulesu, E., Frackowiak, R. S., & Dolan, R. J. (1993). Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia, 31(9), 907–922. https://doi.org/10.1016/0028-3932(93)90147-r
Birn, R. M., Cox, R. W., & Bandettini, P. A. (2002). Detection versus estimation in event-related fMRI: Choosing the optimal stimulus timing. Neuroimage, 15(1), 252–264. https://doi.org/10.1006/nimg.2001.0964
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Wiley. https://doi.org/10.1002/9780470743386
Boucart, M., Mobarek, N., Cuervo, C., & Danion, J. M. (1999). What is the nature of increased Stroop interference in schizophrenia? Acta Psychologica, 101(1), 3–25. https://doi.org/10.1016/S0001-6918(98)00037-7
Article CAS PubMed Google Scholar
Braga, P. L. G., Henrique, J. S., Almeida, S. S., Arida, R. M., & Gomes da Silva, S. (2022). Factors affecting executive function performance of Brazilian elderly in the Stroop test. Brazilian Journal of Medical and Biological Research, 55, e11917. https://doi.org/10.1590/1414-431X2022e11917
Article CAS PubMed PubMed Central Google Scholar
*Brass, M., Derrfuss, J., & von Cramon, D. Y. (2005). The inhibition of imitative and overlearned responses: A functional double dissociation. Neuropsychologia, 43(1), 89–98. https://doi.org/10.1016/j.neuropsychologia.2004.06.018
Braver, T. S., Gray, J. R., & Burgess, G. C. (2008). Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. In Andrew, C. (Ed.), Variation in Working Memory. Oxford Academic. https://doi.org/10.1093/acprof:oso/9780195168648.003.0004
Burgess, G. C., & Braver, T. S. (2010). Neural mechanisms of interference control in working memory: Effects of interference expectancy and fluid intelligence. PloS One, 5(9), e12861. https://doi.org/10.1371/journal.pone.0012861
Article CAS PubMed PubMed Central Google Scholar
Bush, G., Whalen, P. J., Rosen, B. R., Jenike, M. A., McInerney, S. C., & Rauch, S. L. (1998). The counting Stroop: An interference task specialized for functional neuroimaging–validation study with functional MRI. Human Brain Mapping, 6(4), 270–282. https://doi.org/10.1002/(SICI)1097-0193(1998)6:4%3c270::AID-HBM6%3e3.0.CO;2-0
Article CAS PubMed PubMed Central Google Scholar
Bzdok, D., Schilbach, L., Vogeley, K., Schneider, K., Laird, A. R., Langner, R., & Eickhoff, S. B. (2012). Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Structure & Function, 217(4), 783–796. https://doi.org/10.1007/s00429-012-0380-y
Capizzi, M., Ambrosini, E., & Vallesi, A. (2017). Individual differences in verbal and spatial Stroop tasks: Interactive role of handedness and domain. Frontiers in Human Neuroscience, 11, 545. https://doi.org/10.3389/fnhum.2017.00545
Article PubMed PubMed Central Google Scholar
**Carter, C. S., Mintun, M., & Cohen, J. D. (1995). Interference and facilitation effects during selective attention: An H215O PET study of Stroop task performance. Neuroimage, 2(4), 264–272. https://doi.org/10.1006/nimg.1995.1034
Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain [Meta-Analysis Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Neuroimage, 50(3), 1148–1167. https://doi.org/10.1016/j.neuroimage.2009.12.112
Chase, H. W., Kumar, P., Eickhoff, S. B., & Dombrovski, A. Y. (2015). Reinforcement learning models and their neural correlates: An activation likelihood estimation meta-analysis. Cognitive, Affective & Behavioral Neuroscience. https://doi.org/10.3758/s13415-015-0338-7
**Chechko, N., Kellermann, T., Zvyagintsev, M., Augustin, M., Schneider, F., & Habel, U. (2012). Brain circuitries involved in semantic interference by demands of emotional and non-emotional distractors. PLoS ONE, 7(5), e38155. https://doi.org/10.1371/journal.pone.0038155
**Chechko, N., Wehrle, R., Erhardt, A., Holsboer, F., Czisch, M., & Samann, P. G. (2009). Unstable prefrontal response to emotional conflict and activation of lower limbic structures and brainstem in remitted panic disorder. PloS One, 4(5), e5537. https://doi.org/10.1371/journal.pone.0005537
**Chechko, N., Augustin, M., Zvyagintsev, M., Schneider, F., Habel, U., & Kellermann, T. (2013). Brain circuitries involved in emotional interference task in major depression disorder. Journal of Affective Disorders, 149(1–3), 136–145. https://doi.org/10.1016/j.jad.2013.01.013
Chen, Z., Lei, X., Ding, C., Li, H., & Chen, A. (2013). The neural mechanisms of semantic and response conflicts: An fMRI study of practice-related effects in the Stroop task. NeuroImage, 66, 577–584. https://doi.org/10.1016/j.neuroimage.2012.10.028
Chen, T., Becker, B., Camilleri, J., Wang, L., Yu, S., Eickhoff, S. B., & Feng, C. (2018). A domain-general brain network underlying emotional and cognitive interference processing: Evidence from coordinate-based and functional connectivity meta-analyses. Brain Structure & Function, 223(8), 3813–3840. https://doi.org/10.1007/s00429-018-1727-9
*Chen, Z., Zhao, X., Fan, J., & Chen, A. (2018). Functional cerebral asymmetry analyses reveal how the control system implements its flexibility. Human Brain Mapping, 39(12), 4678–4688. https://doi.org/10.1002/hbm.24313
Choi, H. J., Zilles, K., Mohlberg, H., Schleicher, A., Fink, G. R., Armstrong, E., & Amunts, K. (2006). Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus. Journal of Comparative Neurology, 495(1), 53–69. https://doi.org/10.1002/cne.20849
Cieslik, E. C., Mueller, V. I., Eickhoff, C. R., Langner, R., & Eickhoff, S. B. (2015). Three key regions for supervisory attentional control: Evidence from neuroimaging meta-analyses. Neuroscience and Biobehavioral Reviews, 48, 22–34. https://doi.org/10.1016/j.neubiorev.2014.11.003
Cipolotti, L., Healy, C., Spano, B., Lecce, F., Biondo, F., Robinson, G., Chan, E., Duncan, J., Shallice, T., & Bozzali, M. (2016). Strategy and suppression impairments after right lateral prefrontal and orbito-frontal lesions. Brain, 139(Pt 2), e10. https://doi.org/10.1093/brain/awv269
Clark, V. P. (2012). A history of randomized task designs in fMRI. Neuroimage, 62(2), 1190–1194. https://doi.org/10.1016/j.neuroimage.2012.01.010
**Coderre, E. L., & van Heuven, W. J. (2013). Modulations of the executive control network by stimulus onset asynchrony in a Stroop task. BMC Neuroscience, 14, 79. https://doi.org/10.1186/1471-2202-14-79
*Coderre, E. L., Filippi, C. G., Newhouse, P. A., & Dumas, J. A. (2008). The Stroop effect in kana and kanji scripts in native Japanese speakers: An fMRI study. Brain and Language, 107(2), 124–132. https://doi.org/10.1016/j.bandl.2008.01.011
Cohen, L., & Dehaene, S. (2004). Specialization within the ventral stream: The case for the visual word form area. Neuroimage, 22(1), 466–476. https://doi.org/10.1016/j.neuroimage.2003.12.049
Cohen, L., Dehaene, S., Naccache, L., Lehericy, S., Dehaene-Lambertz, G., Henaff, M. A., & Michel, F. (2000). The visual word form area: Spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain, 123(Pt 2), 291–307.
Cohen, L., Lehericy, S., Chochon, F., Lemer, C., Rivaud, S., & Dehaene, S. (2002). Language-specific tuning of visual cortex? Functional properties of the visual word form areA. Brain, 125(Pt 5), 1054–1069. https://doi.org/10.1093/brain/awf094
Comments (0)