Glioma-derived SPARCL1 promotes the formation of peritumoral neuron–glioma synapses

Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, Barnholtz-Sloan JS (2023) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the united States in 2016–2020. Neuro Oncol 25:iv1–iv99. https://doi.org/10.1093/neuonc/noad149

Article  PubMed  PubMed Central  Google Scholar 

Schaff LR, Mellinghoff IK (2023) Glioblastoma and other primary brain malignancies in adults: A review. JAMA 329:574–587. https://doi.org/10.1001/jama.2023.0023

Article  PubMed  PubMed Central  Google Scholar 

Mancusi R, Monje M (2023) The neuroscience of cancer. Nature 618:467–479. https://doi.org/10.1038/s41586-023-05968-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jung E, Alfonso J, Osswald M, Monyer H, Wick W, Winkler F (2019) Emerging intersections between neuroscience and glioma biology. Nat Neurosci 22:1951–1960. https://doi.org/10.1038/s41593-019-0540-y

Article  CAS  PubMed  Google Scholar 

Venkataramani V, Tanev DI, Strahle C, Studier-Fischer A, Fankhauser L, Kessler T, Körber C, Kardorff M, Ratliff M, Xie R, Horstmann H, Messer M, Paik SP, Knabbe J, Sahm F, Kurz FT, Acikgöz AA, Herrmannsdörfer F, Agarwal A, Bergles DE, Chalmers A, Miletic H, Turcan S, Mawrin C, Hänggi D, Liu HK, Wick W, Winkler F, Kuner T (2019) Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573:532–538. https://doi.org/10.1038/s41586-019-1564-x

Article  CAS  PubMed  Google Scholar 

Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M, Tam LT, Espenel C, Ponnuswami A, Ni L, Woo PJ, Taylor KR, Agarwal A, Regev A, Brang D, Vogel H, Hervey-Jumper S, Bergles DE, Suva ML, Malenka RC, Monje M (2019) Electrical and synaptic integration of glioma into neural circuits. Nature 573:539–545. https://doi.org/10.1038/s41586-019-1563-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y-H, Huang T-L, Chen X, Yu S-X, Li W, Chen T, Li Y, Kuang Y-Q, Shu H-F (2021) Glioma-Derived TSP2 promotes excitatory synapse formation and results in hyperexcitability in the peritumoral cortex of glioma. J Neuropathology Experimental Neurol 80:137–149. https://doi.org/10.1093/jnen/nlaa149

Article  CAS  Google Scholar 

Winkler F, Venkatesh HS, Amit M, Batchelor T, Demir IE, Deneen B, Gutmann DH, Hervey-Jumper S, Kuner T, Mabbott D, Platten M, Rolls A, Sloan EK, Wang TC, Wick W, Venkataramani V, Monje M (2023) Cancer neuroscience: state of the field, emerging directions. Cell 186:1689–1707. https://doi.org/10.1016/j.cell.2023.02.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hambrock HO, Nitsche DP, Hansen U, Bruckner P, Paulsson M, Maurer P, Hartmann U (2003) SC1/hevin. An extracellular calcium-modulated protein that binds collagen I. J Biol Chem 278:11351–11358. https://doi.org/10.1074/jbc.M212291200

Article  CAS  PubMed  Google Scholar 

Lively S, Ringuette MJ, Brown IR (2007) Localization of the extracellular matrix protein SC1 to synapses in the adult rat brain. Neurochem Res 32:65–71. https://doi.org/10.1007/s11064-006-9226-4

Article  CAS  PubMed  Google Scholar 

Singh SK, Stogsdill JA, Pulimood NS, Dingsdale H, Kim YH, Pilaz LJ, Kim IH, Manhaes AC, Rodrigues WS Jr., Pamukcu A, Enustun E, Ertuz Z, Scheiffele P, Soderling SH, Silver DL, Ji RR, Medina AE, Eroglu C (2016) Astrocytes assemble thalamocortical synapses by bridging NRX1alpha and NL1 via Hevin. Cell 164:183–196. https://doi.org/10.1016/j.cell.2015.11.034

Article  CAS  PubMed  PubMed Central  Google Scholar 

Risher WC, Patel S, Kim IH, Uezu A, Bhagat S, Wilton DK, Pilaz LJ, Singh Alvarado J, Calhan OY, Silver DL, Stevens B, Calakos N, Soderling SH, Eroglu C (2014) Astrocytes refine cortical connectivity at dendritic spines. Elife 3. https://doi.org/10.7554/eLife.04047

Fan S, Gangwar SP, Machius M, Rudenko G (2021) Interplay between hevin, SPARC, and MDGAs: Modulators of neurexin-neuroligin transsynaptic bridges. Structure. 29: 664–678 e666 https://doi.org/10.1016/j.str.2021.01.003

Eroglu C (2009) The role of astrocyte-secreted matricellular proteins in central nervous system development and function. J Cell Commun Signal 3:167–176. https://doi.org/10.1007/s12079-009-0078-y

Article  PubMed  PubMed Central  Google Scholar 

Buosi AS, Matias I, Araujo APB, Batista C, Gomes FCA (2018) Heterogeneity in synaptogenic profile of astrocytes from different brain regions. Mol Neurobiol 55:751–762. https://doi.org/10.1007/s12035-016-0343-z

Article  CAS  PubMed  Google Scholar 

Stogsdill JA, Eroglu C (2017) The interplay between neurons and glia in synapse development and plasticity. Curr Opin Neurobiol 42:1–8. https://doi.org/10.1016/j.conb.2016.09.016

Article  CAS  PubMed  Google Scholar 

Turtoi A, Musmeci D, Naccarato AG, Scatena C, Ortenzi V, Kiss R, Murtas D, Patsos G, Mazzucchelli G, De Pauw E, Bevilacqua G, Castronovo V (2012) Sparc-like protein 1 is a new marker of human glioma progression. J Proteome Res 11:5011–5021. https://doi.org/10.1021/pr3005698

Article  CAS  PubMed  Google Scholar 

Nunez-delMoral A, Brocos-Mosquera I, Vialou V, Callado LF, Erdozain AM (2021) Characterization of Hevin (SPARCL1) immunoreactivity in postmortem human brain homogenates. Neuroscience 467:91–109. https://doi.org/10.1016/j.neuroscience.2021.05.017

Article  CAS  PubMed  Google Scholar 

Gagliardi F, Narayanan A, Gallotti AL, Pieri V, Mazzoleni S, Cominelli M, Rezzola S, Corsini M, Brugnara G, Altabella L, Politi LS, Bacigaluppi M, Falini A, Castellano A, Ronca R, Poliani PL, Mortini P, Galli R (2020) Enhanced SPARCL1 expression in cancer stem cells improves preclinical modeling of glioblastoma by promoting both tumor infiltration and angiogenesis. Neurobiol Dis 134:104705. https://doi.org/10.1016/j.nbd.2019.104705

Article  CAS  PubMed  Google Scholar 

Li T, Liu X, Yang A, Fu W, Yin F, Zeng X (2017) Associations of tumor suppressor SPARCL1 with cancer progression and prognosis. Oncol Lett 14:2603–2610. https://doi.org/10.3892/ol.2017.6546

Article  CAS  PubMed  PubMed Central  Google Scholar 

Valadez JG, Sarangi A, Lundberg CJ, Cooper MK (2014) Primary orthotopic glioma xenografts recapitulate infiltrative growth and isocitrate dehydrogenase I mutation. J Vis Exp: e50865. https://doi.org/10.3791/50865

Article  Google Scholar 

Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, Nagaraja S, Gibson EM, Mount CW, Polepalli J, Mitra SS, Woo PJ, Malenka RC, Vogel H, Bredel M, Mallick P, Monje M (2015) Neuronal activity promotes glioma growth through Neuroligin-3 secretion. Cell 161:803–816. https://doi.org/10.1016/j.cell.2015.04.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Venkatesh HS, Tam LT, Woo PJ, Lennon J, Nagaraja S, Gillespie SM, Ni J, Duveau DY, Morris PJ, Zhao JJ, Thomas CJ, Monje M (2017) Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549:533–537. https://doi.org/10.1038/nature24014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gan KJ, Sudhof TC (2020) SPARCL1 promotes excitatory but not inhibitory synapse formation and function independent of neurexins and neuroligins. J Neurosci 40:8088–8102. https://doi.org/10.1523/JNEUROSCI.0454-20.2020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buckingham SC, Campbell SL, Haas BR, Montana V, Robel S, Ogunrinu T, Sontheimer H (2011) Glutamate release by primary brain tumors induces epileptic activity. Nat Med 17:1269–1274. https://doi.org/10.1038/nm.2453

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taylor KR, Barron T, Hui A, Spitzer A, Yalçin B, Ivec AE, Geraghty AC, Hartmann GG, Arzt M, Gillespie SM, Kim YS, Maleki Jahan S, Zhang H, Shamardani K, Su M, Ni L, Du PP, Woo PJ, Silva-Torres A, Venkatesh HS, Mancusi R, Ponnuswami A, Mulinyawe S, Keough MB, Chau I, Aziz-Bose R, Tirosh I, Suvà ML, Monje M (2023) Glioma synapses recruit mechanisms of adaptive plasticity. Nature 623:366–374. https://doi.org/10.1038/s41586-023-06678-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramirez JJ, Bindu DS, Eroglu C (2021) Building and destroying synaptic bridges: how do Hevin/Sparcl1, SPARC, and MDGAs modify trans-synaptic neurexin-neuroligin interactions? Structure 29:635–637. https://doi.org/10.1016/j.str.2021.06.011

Article 

Comments (0)

No login
gif