Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, Barnholtz-Sloan JS (2023) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the united States in 2016–2020. Neuro Oncol 25:iv1–iv99. https://doi.org/10.1093/neuonc/noad149
Article PubMed PubMed Central Google Scholar
Schaff LR, Mellinghoff IK (2023) Glioblastoma and other primary brain malignancies in adults: A review. JAMA 329:574–587. https://doi.org/10.1001/jama.2023.0023
Article PubMed PubMed Central Google Scholar
Mancusi R, Monje M (2023) The neuroscience of cancer. Nature 618:467–479. https://doi.org/10.1038/s41586-023-05968-y
Article CAS PubMed PubMed Central Google Scholar
Jung E, Alfonso J, Osswald M, Monyer H, Wick W, Winkler F (2019) Emerging intersections between neuroscience and glioma biology. Nat Neurosci 22:1951–1960. https://doi.org/10.1038/s41593-019-0540-y
Article CAS PubMed Google Scholar
Venkataramani V, Tanev DI, Strahle C, Studier-Fischer A, Fankhauser L, Kessler T, Körber C, Kardorff M, Ratliff M, Xie R, Horstmann H, Messer M, Paik SP, Knabbe J, Sahm F, Kurz FT, Acikgöz AA, Herrmannsdörfer F, Agarwal A, Bergles DE, Chalmers A, Miletic H, Turcan S, Mawrin C, Hänggi D, Liu HK, Wick W, Winkler F, Kuner T (2019) Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573:532–538. https://doi.org/10.1038/s41586-019-1564-x
Article CAS PubMed Google Scholar
Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M, Tam LT, Espenel C, Ponnuswami A, Ni L, Woo PJ, Taylor KR, Agarwal A, Regev A, Brang D, Vogel H, Hervey-Jumper S, Bergles DE, Suva ML, Malenka RC, Monje M (2019) Electrical and synaptic integration of glioma into neural circuits. Nature 573:539–545. https://doi.org/10.1038/s41586-019-1563-y
Article CAS PubMed PubMed Central Google Scholar
Wang Y-H, Huang T-L, Chen X, Yu S-X, Li W, Chen T, Li Y, Kuang Y-Q, Shu H-F (2021) Glioma-Derived TSP2 promotes excitatory synapse formation and results in hyperexcitability in the peritumoral cortex of glioma. J Neuropathology Experimental Neurol 80:137–149. https://doi.org/10.1093/jnen/nlaa149
Winkler F, Venkatesh HS, Amit M, Batchelor T, Demir IE, Deneen B, Gutmann DH, Hervey-Jumper S, Kuner T, Mabbott D, Platten M, Rolls A, Sloan EK, Wang TC, Wick W, Venkataramani V, Monje M (2023) Cancer neuroscience: state of the field, emerging directions. Cell 186:1689–1707. https://doi.org/10.1016/j.cell.2023.02.002
Article CAS PubMed PubMed Central Google Scholar
Hambrock HO, Nitsche DP, Hansen U, Bruckner P, Paulsson M, Maurer P, Hartmann U (2003) SC1/hevin. An extracellular calcium-modulated protein that binds collagen I. J Biol Chem 278:11351–11358. https://doi.org/10.1074/jbc.M212291200
Article CAS PubMed Google Scholar
Lively S, Ringuette MJ, Brown IR (2007) Localization of the extracellular matrix protein SC1 to synapses in the adult rat brain. Neurochem Res 32:65–71. https://doi.org/10.1007/s11064-006-9226-4
Article CAS PubMed Google Scholar
Singh SK, Stogsdill JA, Pulimood NS, Dingsdale H, Kim YH, Pilaz LJ, Kim IH, Manhaes AC, Rodrigues WS Jr., Pamukcu A, Enustun E, Ertuz Z, Scheiffele P, Soderling SH, Silver DL, Ji RR, Medina AE, Eroglu C (2016) Astrocytes assemble thalamocortical synapses by bridging NRX1alpha and NL1 via Hevin. Cell 164:183–196. https://doi.org/10.1016/j.cell.2015.11.034
Article CAS PubMed PubMed Central Google Scholar
Risher WC, Patel S, Kim IH, Uezu A, Bhagat S, Wilton DK, Pilaz LJ, Singh Alvarado J, Calhan OY, Silver DL, Stevens B, Calakos N, Soderling SH, Eroglu C (2014) Astrocytes refine cortical connectivity at dendritic spines. Elife 3. https://doi.org/10.7554/eLife.04047
Fan S, Gangwar SP, Machius M, Rudenko G (2021) Interplay between hevin, SPARC, and MDGAs: Modulators of neurexin-neuroligin transsynaptic bridges. Structure. 29: 664–678 e666 https://doi.org/10.1016/j.str.2021.01.003
Eroglu C (2009) The role of astrocyte-secreted matricellular proteins in central nervous system development and function. J Cell Commun Signal 3:167–176. https://doi.org/10.1007/s12079-009-0078-y
Article PubMed PubMed Central Google Scholar
Buosi AS, Matias I, Araujo APB, Batista C, Gomes FCA (2018) Heterogeneity in synaptogenic profile of astrocytes from different brain regions. Mol Neurobiol 55:751–762. https://doi.org/10.1007/s12035-016-0343-z
Article CAS PubMed Google Scholar
Stogsdill JA, Eroglu C (2017) The interplay between neurons and glia in synapse development and plasticity. Curr Opin Neurobiol 42:1–8. https://doi.org/10.1016/j.conb.2016.09.016
Article CAS PubMed Google Scholar
Turtoi A, Musmeci D, Naccarato AG, Scatena C, Ortenzi V, Kiss R, Murtas D, Patsos G, Mazzucchelli G, De Pauw E, Bevilacqua G, Castronovo V (2012) Sparc-like protein 1 is a new marker of human glioma progression. J Proteome Res 11:5011–5021. https://doi.org/10.1021/pr3005698
Article CAS PubMed Google Scholar
Nunez-delMoral A, Brocos-Mosquera I, Vialou V, Callado LF, Erdozain AM (2021) Characterization of Hevin (SPARCL1) immunoreactivity in postmortem human brain homogenates. Neuroscience 467:91–109. https://doi.org/10.1016/j.neuroscience.2021.05.017
Article CAS PubMed Google Scholar
Gagliardi F, Narayanan A, Gallotti AL, Pieri V, Mazzoleni S, Cominelli M, Rezzola S, Corsini M, Brugnara G, Altabella L, Politi LS, Bacigaluppi M, Falini A, Castellano A, Ronca R, Poliani PL, Mortini P, Galli R (2020) Enhanced SPARCL1 expression in cancer stem cells improves preclinical modeling of glioblastoma by promoting both tumor infiltration and angiogenesis. Neurobiol Dis 134:104705. https://doi.org/10.1016/j.nbd.2019.104705
Article CAS PubMed Google Scholar
Li T, Liu X, Yang A, Fu W, Yin F, Zeng X (2017) Associations of tumor suppressor SPARCL1 with cancer progression and prognosis. Oncol Lett 14:2603–2610. https://doi.org/10.3892/ol.2017.6546
Article CAS PubMed PubMed Central Google Scholar
Valadez JG, Sarangi A, Lundberg CJ, Cooper MK (2014) Primary orthotopic glioma xenografts recapitulate infiltrative growth and isocitrate dehydrogenase I mutation. J Vis Exp: e50865. https://doi.org/10.3791/50865
Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, Nagaraja S, Gibson EM, Mount CW, Polepalli J, Mitra SS, Woo PJ, Malenka RC, Vogel H, Bredel M, Mallick P, Monje M (2015) Neuronal activity promotes glioma growth through Neuroligin-3 secretion. Cell 161:803–816. https://doi.org/10.1016/j.cell.2015.04.012
Article CAS PubMed PubMed Central Google Scholar
Venkatesh HS, Tam LT, Woo PJ, Lennon J, Nagaraja S, Gillespie SM, Ni J, Duveau DY, Morris PJ, Zhao JJ, Thomas CJ, Monje M (2017) Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549:533–537. https://doi.org/10.1038/nature24014
Article CAS PubMed PubMed Central Google Scholar
Gan KJ, Sudhof TC (2020) SPARCL1 promotes excitatory but not inhibitory synapse formation and function independent of neurexins and neuroligins. J Neurosci 40:8088–8102. https://doi.org/10.1523/JNEUROSCI.0454-20.2020
Article CAS PubMed PubMed Central Google Scholar
Buckingham SC, Campbell SL, Haas BR, Montana V, Robel S, Ogunrinu T, Sontheimer H (2011) Glutamate release by primary brain tumors induces epileptic activity. Nat Med 17:1269–1274. https://doi.org/10.1038/nm.2453
Article CAS PubMed PubMed Central Google Scholar
Taylor KR, Barron T, Hui A, Spitzer A, Yalçin B, Ivec AE, Geraghty AC, Hartmann GG, Arzt M, Gillespie SM, Kim YS, Maleki Jahan S, Zhang H, Shamardani K, Su M, Ni L, Du PP, Woo PJ, Silva-Torres A, Venkatesh HS, Mancusi R, Ponnuswami A, Mulinyawe S, Keough MB, Chau I, Aziz-Bose R, Tirosh I, Suvà ML, Monje M (2023) Glioma synapses recruit mechanisms of adaptive plasticity. Nature 623:366–374. https://doi.org/10.1038/s41586-023-06678-1
Article CAS PubMed PubMed Central Google Scholar
Ramirez JJ, Bindu DS, Eroglu C (2021) Building and destroying synaptic bridges: how do Hevin/Sparcl1, SPARC, and MDGAs modify trans-synaptic neurexin-neuroligin interactions? Structure 29:635–637. https://doi.org/10.1016/j.str.2021.06.011
Comments (0)