Characterization of Newly Isolated Bacteriophages Targeting Carbapenem-Resistant

Adriaenssens, E., & Brister, J. R. (2017). How to name and classify your phage: An informal guide. Viruses, 9, 70.

Article  PubMed  PubMed Central  Google Scholar 

Baqer, A. A., Fang, K., Mohd-Assaad, N., Adnan, S. N. A., & Md Nor, N. S. (2022). In vitro activity, stability and molecular characterization of eight potent bacteriophages infecting carbapenem-resistant Klebsiella pneumoniae. Viruses, 15, 117.

Article  PubMed  PubMed Central  Google Scholar 

Bonnin, R. A., Jousset, A. B., Emeraud, C., Oueslati, S., Dortet, L., & Naas, T. (2021). Genetic diversity, biochemical properties, and detection methods of minor carbapenemases in Enterobacterales. Frontiers in Medicine, 7, 616490.

Article  PubMed  PubMed Central  Google Scholar 

Brisse, S., Passet, V., Haugaard, A. B., Babosan, A., Kassis-Chikhani, N., Struve, C., & Decré, D. (2013). wzi Gene sequencing, a rapid method for determination of capsular type for Klebsiella strains. Journal of Clinical Microbiology, 51, 4073–4078.

Article  PubMed  PubMed Central  Google Scholar 

Cho, Y. Y., Kim, J. H., Kim, H., Lee, J., Im, S. J., & Ko, K. S. (2022). Comparison of virulence between two main clones (ST11 and ST307) of Klebsiella pneumoniae isolates from South Korea. Microorganisms, 10, 1827.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi, Y., & J., Kim, S., Shin, M., & Kim, J. (2024a). Isolation and characterization of novel bacteriophages to target carbapenem-resistant Acinetobacter baumannii. Antibiotics (Basel, Switzerland), 13, 610.

CAS  PubMed  Google Scholar 

Choi, Y., & J., Kim, S., Shin, M., & Kim, J. (2024b). Synergistic antimicrobial effects of phage vB_AbaSi_W9 and antibiotics against Acinetobacter baumannii Infection. Antibiotics (Basel, Switzerland), 13, 680.

CAS  PubMed  Google Scholar 

Gencay, Y. E., Jasinskytė, D., Robert, C., Semsey, S., Martínez, V., Petersen, A. Ø., Brunner, K., de Santiago Torio, A., Salazar, A., Turcu, I. C., et al. (2024). Engineered phage with antibacterial CRISPR-Cas selectively reduce E. coli burden in mice. Nature Biotechnology, 422, 265–274.

Article  Google Scholar 

Gordillo Altamirano, F. L., & Barr, J. J. (2019). Phage therapy in the post antibiotic era. Clinical Microbiology Reviews, 32, e00066-e118.

Article  PubMed  PubMed Central  Google Scholar 

Górski, A., Międzybrodzki, R., Jończyk-Matysiak, E., Kniotek, M., & Letkiewicz, S. (2023). Therapeutic phages as modulators of the immune response: Practical implications. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 77, S433–S439.

Article  PubMed  Google Scholar 

Gu Liu, C., Green, S. I., Min, L., Clark, J. R., Salazar, K. C., Terwilliger, A. L., Kaplan, H. B., Trautner, B. W., Ramig, R. F., & Maresso, A. W. (2020). Phage-antibiotic synergy is driven by a unique combination of antibacterial mechanism of action and stoichiometry. Mbio, 11, e01462-e1520.

Article  PubMed  PubMed Central  Google Scholar 

Hagiya, H., Watanabe, N., Maki, M., Murase, T., & Otsuka, F. (2014). Clinical utility of string test as a screening method for hypermucoviscosity-phenotype Klebsiella pneumoniae. Acute Medicine & Surgery, 1, 245–246.

Article  Google Scholar 

Hasan, M., & Ahn, J. (2022). Evolutionary dynamics between phages and bacteria as a possible approach for designing effective phage therapies against antibiotic-resistant bacteria. Antibiotics, 11(7), 915.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horváth, M., Kovács, T., Koderivalappil, S., Ábrahám, H., Rákhely, G., & Schneider, G. (2020). Identification of a newly isolated lytic bacteriophage against K24 capsular type, carbapenem resistant Klebsiella pneumoniae isolates. Scientific Reports, 10, 5891.

Article  PubMed  PubMed Central  Google Scholar 

Knecht, L. E., Veljkovic, M., & Fieseler, L. (2020). Diversity and function of phage encoded depolymerases. Frontiers in Microbiology, 10, 2949.

Article  PubMed  PubMed Central  Google Scholar 

Lee, Y. J. (2023). Master thesis. Characterization of novel bacteriophages against Pseudomonas aeruginosa, Salmonella enteritidis, and Escherichia coli. Kyungpook National University, Daegu, Korea.

Li, N., Zeng, Y., Bao, R., Zhu, T., Tan, D., & Hu, B. (2021). Isolation and characterization of novel phages targeting pathogenic Klebsiella pneumoniae. Frontiers in Cellular and Infection Microbiology, 11, 792305.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mateus, L., Costa, L., Silva, Y. J., Pereira, C., Cunha, A., & Almeida, A. (2014). Efficiency of phage cocktails in the inactivation of Vibrio in aquaculture. Aquaculture, 424–425, 167–173.

Article  Google Scholar 

Moellering, R. C., Jr. (2010). NDM-1–a cause for worldwide concern. The New England Journal of Medicine, 363(25), 2377–2379.

Article  CAS  PubMed  Google Scholar 

Nilsson, A. S. (2019). Pharmacological limitations of phage therapy. Upsala Journal of Medical Sciences, 124, 218–227.

Article  PubMed  PubMed Central  Google Scholar 

Pan, Y. J., Lin, T. L., Chen, C. C., Tsai, Y. T., Cheng, Y. H., Chen, Y. Y., Hsieh, P. F., Lin, Y. T., & Wang, J. T. (2017). Klebsiella phage ΦK64-1 encodes multiple depolymerases for multiple host capsular types. Journal of Virology, 91(6), e02457-e2516.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng, Q., Ma, Z., Han, Q., Xiang, F., Wang, L., Zhang, Y., Zhao, Y., Li, J., Xian, Y., & Yuan, Y. (2023). Characterization of bacteriophage vB_KleM_KB2 possessing high control ability to pathogenic Klebsiella pneumoniae. Scientific Reports, 13, 9815.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salmond, G. P., & Fineran, P. C. (2015). A century of the phage: Past, present and future. Nature Reviews Microbiology, 13, 777–786.

Article  CAS  PubMed  Google Scholar 

Tang, M., Huang, Z., Zhang, X., Kong, J., Zhou, B., Han, Y., Zhang, Y., Chen, L., & Zhou, T. (2023). Phage resistance formation and fitness costs of hypervirulent Klebsiella pneumoniae mediated by K2 capsule-specific phage and the corresponding mechanisms. Frontiers in Microbiology, 14, 1156292.

Article  PubMed  PubMed Central  Google Scholar 

Texas A&M University. (2018). Phage DNA extraction by phenol/chloroform protocol. Retrieved from https://cpt.tamu.edu/wordpress/wp-content/uploads/2018/09/Phage-DNA-Extraction-by-PhenolChloroform-Protocol.pdf

Townsend, E. M., Kelly, L., Gannon, L., Muscatt, G., Dunstan, R., Michniewski, S., Sapkota, H., Kiljunen, S. J., Kolsi, A., Skurnik, M., et al. (2021). Isolation and characterization of Klebsiella phages for phage therapy. PHAGE, 2(1), 26–42.

Article  PubMed  PubMed Central  Google Scholar 

Yoon, E. J., Kim, J. O., Kim, D., Lee, H., Yang, J. W., Lee, K. J., & Jeong, S. H. (2018). Klebsiella pneumoniae carbapenemase producers in South Korea between 2013 and 2015. Frontiers in Microbiology, 9, 56.

Article  PubMed  PubMed Central  Google Scholar 

Zurabov, F., & Zhilenkov, E. (2021). Characterization of four virulent Klebsiella pneumoniae bacteriophages, and evaluation of their potential use in complex phage preparation. Virology Journal, 18, 9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif