Rogers S, McIntosh RL, Cheung N, Lim L, Wang JJ, Mitchell P et al (2010) The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Ophthalmology 117:313-319.e1. https://doi.org/10.1016/j.ophtha.2009.07.017
Zhou JQ, Xu L, Wang S, Wang YX, You QS, Tu Y et al (2013) The 10-year incidence and risk factors of retinal vein occlusion: the Beijing eye study. Ophthalmology 120:803–808. https://doi.org/10.1016/j.ophtha.2012.09.033
Hayreh SS, Rojas P, Podhajsky P, Montague P, Woolson RF (1983) Ocular neovascularization with retinal vascular occlusion-III. Incidence of ocular neovascularization with retinal vein occlusion. Ophthalmology 90:488–506. https://doi.org/10.1016/s0161-6420(83)34542-5
Article CAS PubMed Google Scholar
Li J, Paulus YM, Shuai Y, Fang W, Liu Q, Yuan S (2017) New developments in the classification, pathogenesis, risk factors, natural history, and treatment of branch retinal vein occlusion. J Ophthalmol 2017:4936924. https://doi.org/10.1155/2017/4936924
Article CAS PubMed PubMed Central Google Scholar
Noma H, Funatsu H, Yamasaki M, Tsukamoto H, Mimura T, Sone T et al (2008) Aqueous humour levels of cytokines are correlated to vitreous levels and severity of macular oedema in branch retinal vein occlusion. Eye (Lond) 22:42–48. https://doi.org/10.1038/sj.eye.6702498
Article CAS PubMed Google Scholar
Noma H, Funatsu H, Mimura T, Eguchi S, Shimada K (2011) Role of soluble vascular endothelial growth factor receptor-2 in macular oedema with central retinal vein occlusion. Br J Ophthalmol 95:788–792. https://doi.org/10.1136/bjo.2010.192468
Neufeld AH, Kawai S, Das S, Vora S, Gachie E, Connor JR et al (2002) Loss of retinal ganglion cells following retinal ischemia: the role of inducible nitric oxide synthase. Exp Eye Res 75:521–528. https://doi.org/10.1006/exer.2002.2042
Article CAS PubMed Google Scholar
Alshareef RA, Barteselli G, You Q, Goud A, Jabeen A, Rao HL et al (2016) In vivo evaluation of retinal ganglion cells degeneration in eyes with branch retinal vein occlusion. Br J Ophthalmol 100:1506–1510. https://doi.org/10.1136/bjophthalmol-2015-308106
Kang HM, Koh HJ, Lee SC (2015) Visual outcome and prognostic factors after surgery for a secondary epiretinal membrane associated with branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol 253:543–550. https://doi.org/10.1007/s00417-014-2731-2
Campochiaro PA, Heier JS, Feiner L, Gray S, Saroj N, Rundle AC et al (2010) Ranibizumab for macular edema following branch retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology 117(1102–1112):e1. https://doi.org/10.1016/j.ophtha.2010.02.021
Clark WL, Boyer DS, Heier JS, Brown DM, Haller JA, Vitti R et al (2016) Intravitreal aflibercept for macular edema following branch retinal vein occlusion: 52-week results of the VIBRANT study. Ophthalmology 123:330–336. https://doi.org/10.1016/j.ophtha.2015.09.035
Miwa Y, Muraoka Y, Osaka R, Ooto S, Murakami T, Suzuma K (2017) Ranibizumab for macular edema after branch retinal vein occlusion: one initial injection versus three monthly injections. Retina 37:702–709. https://doi.org/10.1097/IAE.0000000000001224
Article CAS PubMed Google Scholar
Noma H, Yasuda K, Narimatsu A, Asakage M, Shimura M (2023) New individualized aflibercept treatment protocol for branch retinal vein occlusion with macular edema. Sci Rep 13:1536. https://doi.org/10.1038/s41598-023-28533-z
Article CAS PubMed PubMed Central Google Scholar
Noma H, Mimura T, Yasuda K, Nakagawa H, Motohashi R, Kotake O et al (2016) Cytokines and recurrence of macular edema after intravitreal ranibizumab in patients with branch retinal vein occlusion. Ophthalmologica 236:228–234. https://doi.org/10.1159/000451062
Article CAS PubMed Google Scholar
Lee GW, Kang SW, Kang MC, Kim SJ, Kim YY (2021) Associations with recurrence of macular edema in branch retinal vein occlusion after the discontinuation of anti vascular endothelial growth factor. Retina 41:1892–1900. https://doi.org/10.1097/IAE.0000000000003118
Article CAS PubMed Google Scholar
Yiu G, Huang D, Wang Y, Wang Z, Yang M, Haskova Z (2023) Predictors of as-needed ranibizumab injection frequency in patients with macular edema following retinal vein occlusion. Am J Ophthalmol 249:74–81. https://doi.org/10.1016/j.ajo.2023.01.004
Article CAS PubMed Google Scholar
Fragiotta S, Abdolrahimzadeh S, Dolz-Marco R, Sakurada Y, Gal-Or O, Scuderi G (2021) Significance of hyperreflective foci as an optical coherence tomography biomarker in retinal diseases: characterization and clinical implications. J Ophthalmol. https://doi.org/10.1155/2021/6096017
Article PubMed PubMed Central Google Scholar
Wang J, Cui Y, Vingopoulos F, Kasetty M, Silverman RF, Katz R et al (2022) Disorganisation of retinal inner layers is associated with reduced contrast sensitivity in retinal vein occlusion. Br J Ophthalmol 106:241–245. https://doi.org/10.1136/bjophthalmol-2020-317615
Choi YJ, Jee D, Kwon JW (2022) Characteristics of major and macular branch retinal vein occlusion. Sci Rep 12:14103. https://doi.org/10.1038/s41598-022-18414-2
Article CAS PubMed PubMed Central Google Scholar
Yeung L, Wu WC, Chuang LH, Wang NK, Lai CC (2019) Novel optical coherence tomography angiography biomarker in branch retinal vein occlusion macular edema. Retina 39:1906–1916. https://doi.org/10.1097/IAE.0000000000002264
Huang PW, Lai CC, Hwang YS, Wu WC, Wu CH, Huang JC et al (2022) Treatment responses for branch retinal vein occlusion predicted by semi-automated fluorescein angiography quantification. BMC Ophthalmol 22:50. https://doi.org/10.1186/s12886-022-02245-w
Article CAS PubMed PubMed Central Google Scholar
Li Z, Gu X, Song S, Yu X, Zhang P, Dai H (2022) Structural and visual changes in branch retinal vein occlusion patients with retinal atrophy. J Ophthalmol 2022:8945467. https://doi.org/10.1155/2022/8945467
Article CAS PubMed PubMed Central Google Scholar
Campochiaro PA, Sophie R, Pearlman J, Brown DM, Boyer DS, Heier JS et al (2014) Long-term outcomes in patients with retinal vein occlusion treated with ranibizumab: the RETAIN study. Ophthalmology 121:209–219. https://doi.org/10.1016/j.ophtha.2013.08.038
Iida-Miwa Y, Muraoka Y, Iida Y, Ooto S, Murakami T, Suzuma K et al (2019) Branch retinal vein occlusion: treatment outcomes according to the retinal nonperfusion area, clinical subtype, and crossing pattern. Sci Rep 9:6569. https://doi.org/10.1038/s41598-019-42982-5
Article CAS PubMed PubMed Central Google Scholar
Groneberg T, Trattnig JS, Feucht N, Lohmann CP, Maier M (2016) Morphologic patterns on spectral-domain optical coherence tomography (SD-OCT) as a prognostic indicator in treatment of macular edema due to retinal vein occlusion. Klin Monbl Augenheilkd 233:1056–1062. https://doi.org/10.1055/s-0041-108680
Article CAS PubMed Google Scholar
Hoeh AE, Ruppenstein M, Ach T, Dithmar S (2010) OCT patterns of macular edema and response to bevacizumab therapy in retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol 248:1567–1572. https://doi.org/10.1007/s00417-010-1419-5
Article CAS PubMed Google Scholar
Kang JW, Lee H, Chung H, Kim HC (2014) Correlation between optical coherence tomographic hyperreflective foci and visual outcomes after intravitreal bevacizumab for macular edema in branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol 252:1413–1421. https://doi.org/10.1007/s00417-014-2595-5
Article CAS PubMed Google Scholar
Ohashi H, Oh H, Nishiwaki H, Nonaka A, Takagi H (2004) Delayed absorption of macular edema accompanying serous retinal detachment after grid laser tr
Comments (0)