Alonso-Mejia A, Rendon-Salinas E, Montesinos-Patino E, Brower LP (1997) Use of lipid reserves by monarch butterflies overwintering in Mexico: implications for conservation. Ecol Appl 7:934–947. https://doi.org/10.2307/2269444
Altizer SM, Davis AK (2010) Populations of monarch butterflies with different migratory behaviors show divergence in wing morphology. Evolution 64:1018–1028. https://doi.org/10.1111/j.1558-5646.2009.00946.x
Altizer SM, Oberhauser KS (1999) Effects of the protozoan parasite Ophryocystis elektroscirrha on the fitness of monarch butterflies (Danaus plexippus). J Invertebr Pathol 74:76–88. https://doi.org/10.1006/jipa.1999.4853
Article CAS PubMed Google Scholar
Anderson JB, Brower LP (1996) Freeze-protection of overwintering monarch butterflies in Mexico: critical role of the forest as a blanket and an umbrella. Ecol Entomol 21:107–116. https://doi.org/10.1111/j.1365-2311.1996.tb01177.x
Anparasan L (2023) Effect of rearing conditions on the allocation of larval and adult acquired essential and nonessential fatty acids to flight in two adult Lepidoptera: Danaus plexippus and Mythimna unipuncta. [PhD Dissertation], University of Western Ontario, London, Ontario, Canada
Anparasan L, Hobson KA, McNeil JN (2023) Effect of rearing conditions on fatty acid allocation during flight in nectivorous lepidopteran Mythimna unipuncta. Front Ecol Evol 11:1055534. https://doi.org/10.3389/fevo.2023.1055534
Arrese EL, Soulages JL (2010) Insect fat body: Energy, metabolism, and regulation. Annu Rev Entomol 55:207–225. https://doi.org/10.1146/annurev-ento-112408-085356
Article CAS PubMed PubMed Central Google Scholar
Bale JS, Hayward SAL (2010) Insect overwintering in a changing climate. J Exp Biol 213:980–994. https://doi.org/10.1242/jeb.037911
Article CAS PubMed Google Scholar
Beenakkers AMT, Van der Horst DJ, Van Marrewijk WJ (1985) Insect lipids and lipoproteins, and their role in physiological processes. Prog Lipid Res 24:19–67. https://doi.org/10.1016/0163-7827(85)90007-4
Article CAS PubMed Google Scholar
Bennett VA, Pruitt NL, Lee Jr RE (1997) Seasonal changes in fatty acid composition associated with cold hardening in third instar larvae of Eurosta solidaginis. J Comp Physiol B 167:249–255. https://doi.org/10.1007/s003600050071
Brower LP (1985) New perspectives on the migration biology of the monarch butterfly, Danaus plexippus L. In: Rankin MA (ed) Migration: mechanisms and adaptive significance. University of Texas, Austin, Texas, USA, pp 748–785
Brower LP, Fink LS, Walford P (2006) Fueling the fall migration of the monarch butterfly. Integr Comp Biol 46:1123–1142. https://doi.org/10.1093/icb/icl029
Brower LP, Williams EH, Slayback DA, Fink LS, Ramirez IM et al (2009) Oyamel fir forest trunks provide thermal advantages for overwintering monarch butterflies in Mexico. Insect Conserv Divers 2:163–175. https://doi.org/10.1111/j.1752-4598.2009.00052.x
Brown JJ, Chippendale GM (1974) Migration of the monarch butterfly, Danaus plexippus: Energy sources. J Insect Physiol 20:1117e1130. https://doi.org/10.1016/0022-1910(74)90218-2
Çakmak O (2010) Seasonal changes in fatty acid composition of Eysarcoris inconspicuous (Herrich-Schaffer, 1844) (Heteroptera: Pentatomidae) adults. Türk. Entomol Derg 34:15–27
Calvert WH, Brower LP (1981) The importance of forest cover for the survival of overwintering monarch butterflies (Danaus plexippus, Danaidae). J Lepidopt Soc 35:216–225
Calvert WH, Brower LP (1986) The location of monarch butterfly (Danaus plexippus L.) overwintering colonies in Mexico in relation to topography and climate. J Lepidopt Soc 40:164–187
Calvert WH, Cohen JA (1983) The adaptive significance of crawling up onto foliage for the survival of grounded overwintering monarch butterflies (Danaus plexippus) in Mexico. Ecol Entomol 8:471474. https://doi.org/10.1111/j.1365-2311.1983.tb00525.x
Calvert WH, Lawton RO (1993) Comparative phenology of variation in size, weight, and water content of eastern north American monarch butterflies at five overwintering sites in Mexico. In: Malcolm SB, Zalucki MP (eds) Biology and Conservation of the Monarch Butterfly. Natural History Museum of Los Angeles, Los Angeles, California, USA, pp 299–307
Canavoso LE, Jouni ZE, Karnas KJ, Pennington JE, Wells MA (2001) Fat metabolism in insects. Annu Rev Nutr 21:23–46. https://doi.org/10.1146/annurev.nutr.21.1.23
Article CAS PubMed Google Scholar
Cenedella RJ (1971) The lipids of the female monarch butterfly, Danaus plexippus, during fall migration. Insect Biochem 1:244–247. https://doi.org/10.1016/0020-1790(71)90077-1
Chaplin SB, Wells PH (1982) Energy reserves and metabolic expenditures of monarch butterflies overwintering in Southern California. Ecol Entomol 7:249–256. https://doi.org/10.1111/j.1365-2311.1982.tb00664.x
Chapman D (1975) Phase transitions and fluidity characteristics of lipids and cell membranes. Q Rev Biophys 8:185–235. https://doi.org/10.1017/s0033583500001797
Article CAS PubMed Google Scholar
Chapman JW, Bell JR, Burgin LE, Reynolds DR, Pettersson LB et al (2012) Seasonal migration to high latitudes results in major reproductive benefits in an insect. Proc Natl Acad Sci USA 109:14924–14929. https://doi.org/10.1073/pnas.1207255109
Article CAS PubMed PubMed Central Google Scholar
Chapman JW, Reynolds DR, Wilson K (2015) Long-range seasonal migration in insects: mechanisms, evolutionary drivers, and ecological consequences. Ecol Lett 18:287–302. https://doi.org/10.1111/ele.12407
Curran PJ, West SG, Finch JF (1996) The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychol Methods 1:16–29. https://doi.org/10.1037/1082-989X.1.1.16
Danks HV (2006) Insect adaptations to cold and changing environments. Can Entomol 138:1–23. https://doi.org/10.4039/n05-802
Davis AK, Holden MT (2015) Measuring intraspecific variation in flight-related morphology of monarch butterflies (Danaus plexippus): which sex has the best flying gear? J Insects 591705. https://doi.org/10.1155/2015/591705
Dingle H (1972) Migration strategies of insects. Science 175:1327–1335. https://doi.org/10.1126/science.175.4028.1327
Article CAS PubMed Google Scholar
Downer RGH, Matthews JR (1976) Patterns of lipid distribution and utilization in insects. Amer Zool 16:733–745. https://doi.org/10.1093/icb/16.4.733
Forte SN, Ferrero AA, Alonso TS (2002) Content and composition of phosphoglycerols and neutral lipids at different developmental stages of the eggs of the codling moth, Cydia Pomonella (Lepidoptera: Tortricidae). Arch Insect Biochem Physiol 50:121–130. https://doi.org/10.1002/arch.10036
Article CAS PubMed Google Scholar
Gilby AR (1965) Lipids and their metabolism in insects. Annu Rev Entomol 10:141–160. https://doi.org/10.1146/annurev.en.10.010165.001041
Goehring L, Oberhauser KS (2002) Effects of photoperiod, temperature, and host plant age on induction of reproductive diapause and development time in Danaus plexippus. Ecol. Entomol., 27, 674–685. https://doi.org/10.1046/j.1365-2311.2002.00454.x
Hahn, D. A. and Denlinger, D. L. (2007) Meeting the energetic demands of insect diapause: nutrient storage and utilization. J Insect Physiol., 53, 760–773. https://doi.org/10.1016/j.jinsphys.2007.03.018
Hahn DA, Denlinger DL (2011) Energetics of insect diapause. Ann Rev Entomol 56:103–121. https://doi.org/10.1146/annurev-ento-112408-085436
Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu. Rev Physiol 57:19–42. https://doi.org/10.1146/annurev.ph.57.030195.000315
Hazel JR, Williams EE (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29:167–227. https://doi.org/10.1016/0163-7827(90)90002-3
Article CAS PubMed Google Scholar
Herman WS, Brower LP, Calvert WH (1989) Reproductive tract development in monarch butterflies overwintering in California and Mexico. J Lepidopt Soc 43:50–58
Hobson KA, García-Rubio OR, Carrera-Treviño R, Anparasan L, Kardynal KJ et al (2020) Isotopic (δ2H) analysis of stored lipids in migratory and overwintering monarch butterflies (Danaus plexippus): evidence for Southern critical late-stage nectaring sites? Front. Ecol Evol 8:572140. https://doi.org/10.3389/fevo.2020.572140
Comments (0)