Transcription and DNA replication collisions lead to large tandem duplications and expose targetable therapeutic vulnerabilities in cancer

Yang, L. et al. Diverse mechanisms of somatic structural variations in human cancer genomes. Cell 153, 919–929 (2013).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lee, J.-K., Choi, Y.-L., Kwon, M. & Park, P. J. Mechanisms and consequences of cancer genome instability: lessons from genome sequencing studies. Annu. Rev. Pathol. 11, 283–312 (2016).

Article  PubMed  CAS  Google Scholar 

Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534, 47–54 (2016).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hakim, O. et al. DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature 484, 69–74 (2012).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Burke, W. et al. Recommendations for follow-up care of individuals with an inherited predisposition to cancer. II. BRCA1 and BRCA2. Cancer Genetics Studies Consortium. JAMA 277, 997–1003 (1997).

Article  PubMed  CAS  Google Scholar 

Fong, P. C. et al. Inhibition of Poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

Article  PubMed  CAS  Google Scholar 

Gaillard, H., García-Muse, T. & Aguilera, A. Replication stress and cancer. Nat. Rev. Cancer 15, 276–280 (2015).

Article  PubMed  CAS  Google Scholar 

Macheret, M. & Halazonetis, T. D. DNA replication stress as a hallmark of cancer. Annu. Rev. Pathol. 10, 425–448 (2015).

Article  PubMed  CAS  Google Scholar 

Denko, N. C., Giaccia, A. J., Stringer, J. R. & Stambrook, P. J. The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle. Proc. Natl Acad. Sci. USA 91, 5124–5128 (1994).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Vafa, O. et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol. Cell 9, 1031–1044 (2002).

Article  PubMed  CAS  Google Scholar 

Creighton, C. J. et al. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

Article  CAS  Google Scholar 

Macheret, M. & Halazonetis, T. D. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress. Nature 555, 112–116 (2018).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hamperl, S., Bocek, M. J., Saldivar, J. C., Swigut, T. & Cimprich, K. A. Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. Cell 170, 774–786.e19 (2017).

Article  PubMed  PubMed Central  CAS  Google Scholar 

García-Muse, T. & Aguilera, A. Transcription-replication conflicts: how they occur and how they are resolved. Nat. Rev. Mol. Cell Biol. 17, 553–563 (2016).

Article  PubMed  Google Scholar 

Helmrich, A., Ballarino, M. & Tora, L. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell 44, 966–977 (2011).

Article  PubMed  CAS  Google Scholar 

Sankar, T. S., Wastuwidyaningtyas, B. D., Dong, Y., Lewis, S. A. & Wang, J. D. The nature of mutations induced by replication-transcription collisions. Nature 535, 178–181 (2016).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Seplyarskiy, V. B. et al. Population sequencing data reveal a compendium of mutational processes in the human germ line. Science 373, 1030–1035 (2021).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Macintyre, G. et al. Copy number signatures and mutational processes in ovarian carcinoma. Nat. Genet. 50, 1262–1270 (2018).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Steele, C. D. et al. Signatures of copy number alterations in human cancer. Nature 606, 984–991 (2022).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Drews, R. M. et al. A pan-cancer compendium of chromosomal instability. Nature 606, 976–983 (2022).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bao, L., Zhong, X., Yang, Y. & Yang, L. Starfish infers signatures of complex genomic rearrangements across human cancers. Nat. Cancer 3, 1247–1259 (2022).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Campbell, P. J. et al. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

Article  Google Scholar 

Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pleasance, E. et al. Pan-cancer analysis of advanced patient tumors reveals interactions between therapy and genomic landscapes. Nat. Cancer 1, 452–468 (2020).

Article  PubMed  CAS  Google Scholar 

Islam, S. M. A. et al. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. Cell Genom. 2, 100179 (2022).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Menghi, F. et al. The tandem duplicator phenotype is a prevalent genome-wide cancer configuration driven by distinct gene mutations. Cancer Cell 34, 197–210.e5 (2018).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Drier, Y. et al. Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability. Genome Res. 23, 228–235 (2013).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Popova, T. et al. Ovarian cancers harboring inactivating mutations in CDK12 display a distinct genomic instability pattern characterized by large tandem duplications. Cancer Res. 76, 1882–1891 (2016).

Article  PubMed  CAS 

Comments (0)

No login
gif