Protective effects of Sphaeranthus indicus floral extract against BPS-induced testicular damage in rats occurs through downregulation of RIPK1/3-MLK-driven necroptosis and Fas-FasL-mediated apoptosis

Abd-Elkareem M, Abd El-Rahman MAM, Khalil NSA, Amer AS (2021) Antioxidant and cytoprotective effects of Nigella sativa L. seeds on the testis of monosodium glutamate challenged rats. Sci Rep 11(1):13519. https://doi.org/10.1038/s41598-021-92977-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdallah FB, Fetoui H, Zribi N, Fakhfakh F, Keskes L (2012) Protective role of caffeic acid on lambda cyhalothrin-induced changes in sperm characteristics and testicular oxidative damage in rats. Toxicol Industrial Health 28(7):639–647. https://doi.org/10.1177/0748233711420470

Article  CAS  Google Scholar 

Aebi H (1974) Catalase. Methods of enzymatic analysis. Elsevier, pp 673–684

Agrawal DDVS (1997) Drug Plants of India (Kalyani Publishers). 2 https://doi.org/10.4103/jpbs.JPBS_175_19

Akalewold M, Yohannes GW, Abdo ZA, Hailu Y, Negesse A (2022) Magnitude of infertility and associated factors among women attending selected public hospitals in Addis Ababa, Ethiopia: a cross-sectional study. BMC Womens Health 22(1):11. https://doi.org/10.1186/s12905-022-01601-8

Article  PubMed  PubMed Central  Google Scholar 

Aldemir M, Özgün G, Önen E, Okulu E, Kayıgil Ö (2012) Quercetin has a protective role on histopathological findings on testicular ischaemia–reperfusion injury in rats. Andrologia 44:479–483. https://doi.org/10.1111/j.1439-0272.2011.01211.x

Article  CAS  PubMed  Google Scholar 

Anderson R, Willis B, Oswald C, Zaneveld L (1983) Ethanol-induced male infertility: impairment of spermatozoa. J Pharmacol Experimental Ther 225(2):479–486

CAS  Google Scholar 

Badr GM, Elsawy H, Sedky A, Eid R, Ali A, Abdallah BM, Alzahrani AM, Abdel-Moneim AM (2019) Protective effects of quercetin supplementation against short-term toxicity of cadmium-induced hematological impairment, hypothyroidism, and testicular disturbances in albino rats. Environ Sci Pollut Res 26:8202–8211

Article  CAS  Google Scholar 

Banihani SA (2019) Mechanisms of honey on testosterone levels. Heliyon 5(7):e02029

Article  PubMed  PubMed Central  Google Scholar 

Beronius A, Ruden C, Hakansson H, Hanberg A (2010) Risk to all or none? A comparative analysis of controversies in the health risk assessment of Bisphenol A. Reprod Toxicol 29(2):132–146. https://doi.org/10.1016/j.reprotox.2009.11.007

Article  CAS  PubMed  Google Scholar 

Bharti S, Misro MM, Rai U (2014) Quercetin supplementation restores testicular function and augments germ cell survival in the estrogenized rats. Mol Cell Endocrinol 383(1–2):10–20. https://doi.org/10.1016/j.mce.2013.11.021

Article  CAS  PubMed  Google Scholar 

Birnbaum LS, Bucher JR, Collman GW, Zeldin DC, Johnson AF, Schug TT, Heindel JJ (2012) Consortium-based science: the NIEHS’s multipronged, collaborative approach to assessing the health effects of bisphenol A. Environ Health Perspect 120(12):1640–1644. https://doi.org/10.1289/ehp.1205330

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai Z, Jitkaew S, Zhao J, Chiang H-C, Choksi S, Liu J, Ward Y, Wu L-g, Liu Z-G (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16(1):55–65

Article  CAS  PubMed  Google Scholar 

Chen X, Li W, Ren J, Huang D, He W-t, Song Y, Yang C, Li W, Zheng X, Chen P (2014) Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res 24(1):105–121

Article  CAS  PubMed  Google Scholar 

Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22(2):263–268

Article  CAS  PubMed  PubMed Central  Google Scholar 

D’Alessio A, Riccioli A, Lauretti P, Padula F, Muciaccia B, De Cesaris P, Filippini A, Nagata S, Ziparo E (2001) Testicular FasL is expressed by sperm cells. Proceedings of the National Academy of Sciences. 98 (6) 3316–3321

Darghouthi M, Rezg R, Boughmadi O, Mornagui B (2022) Low-dose bisphenol S exposure induces hypospermatogenesis and mitochondrial dysfunction in rats: a possible implication of StAR protein. Reprod Toxicol 107:104–111. https://doi.org/10.1016/j.reprotox.2021.11.007

Article  CAS  PubMed  Google Scholar 

Degterev A, Hitomi J, Germscheid M, Ch’ IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4(5):313–321

Article  CAS  PubMed  PubMed Central  Google Scholar 

den Braver-Sewradj SP, van Spronsen R, Hessel EVS (2020) Substitution of bisphenol A: a review of the carcinogenicity, reproductive toxicity, and endocrine disruption potential of alternative substances. Crit Rev Toxicol 50(2):128–147. https://doi.org/10.1080/10408444.2019.1701986

Article  CAS  Google Scholar 

Durak I, Yurtarslanl Z, Canbolat O, Akyol O (1993) A methodological approach to superoxide dismutase (SOD) activity assay based on inhibition of nitroblue tetrazolium (NBT) reduction. Clin Chim Acta 214(1):103–104. https://doi.org/10.1016/0009-8981(93)90307-p

Article  CAS  PubMed  Google Scholar 

El-Khadragy MF, Al-Megrin WA, Alomar S, Alkhuriji AF, Metwally DM, Mahgoub S, Amin HK, Habotta OA, Abdel Moneim AE, Albeltagy RS (2021) Chlorogenic acid abates male reproductive dysfunction in arsenic-exposed mice via attenuation of testicular oxido-inflammatory stress and apoptotic responses. Chemico-Biol Interact 333109333. https://doi.org/10.1016/j.cbi.2020.109333

Eliasson R (1977) Supravital Staining of Human Spermatozoa. Fertility Steril 28(11):1257. https://doi.org/10.1016/S0015-0282(16)42927-4

Article  CAS  Google Scholar 

Eliasson R, Treichl L (1971) Supravital staining of human spermatozoa. Fertility Steril 22(2):134–137

Article  CAS  Google Scholar 

Feng Y, Yin J, Jiao Z, Shi J, Li M, Shao B (2012) Bisphenol AF may cause testosterone reduction by directly affecting testis function in adult male rats. Toxicol Lett 211(2):201–209. https://doi.org/10.1016/j.toxlet.2012.03.802

Article  CAS  PubMed  Google Scholar 

Galani VJ, Patel BG, Rana DG (2010) Sphaeranthus Indicus Linn.: a phytopharmacological review. Int J Ayurveda Res 1(4):247–253. https://doi.org/10.4103/0974-7788.76790

Article  PubMed  PubMed Central  Google Scholar 

Garcia MS, Cavalcante DNC, Araujo Santiago MDS, de Medeiros PDC, do Nascimento CC, Fonseca GFC, Le Sueur-Maluf L, Perobelli JE (2021) Reproductive toxicity in male juvenile rats: antagonistic effects between isolated agrochemicals and in binary or ternary combinations. Ecotoxicol Environ Saf 209111766. https://doi.org/10.1016/j.ecoenv.2020.111766

Geens T, Goeyens L, Covaci A (2011) Are potential sources for human exposure to bisphenol-A overlooked? Int J Hygiene Environ Health 214(5):339–347. https://doi.org/10.1016/j.ijheh.2011.04.005

Article  CAS  Google Scholar 

Hafezi SA, Abdel-Rahman WM (2019) The endocrine disruptor bisphenol A (BPA) exerts a wide range of effects in Carcinogenesis and Response to Therapy. Curr Mol Pharmacol 12(3):230–238. https://doi.org/10.2174/1874467212666190306164507

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hassan AH, Ismail AA, Khudir AN (2013) Effects of pre-and postnatal exposure to Bisphenol-A on the reproductive efficacy in male albino rats. J Kerbala Univ 11(3):158–172

Google Scholar 

He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137(6):1100–1111

Article  CAS  PubMed  Google Scholar 

Herrero Ó, Aquilino M, Sánchez-Argüello P, Planelló R (2018) The BPA-substitute bisphenol S alters the transcription of genes related to endocrine, stress response and biotransformation pathways in the aquatic midge Chironomus riparius (Diptera, Chironomidae). PLoS ONE 13(2):e0193387

Article  PubMed  PubMed Central  Google Scholar 

Hildebrand JM, Tanzer MC, Lucet IS, Young SN, Spall SK, Sharma P, Pierotti C, Garnier J-M, Dobson RC, Webb AI (2014) Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc Natl Acad Sci 111(42):15072–15077

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer J-L, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8–independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1(6):489–495

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif