Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B (Methodol) 57:289–300
Browning BL (2008) PRESTO: rapid calculation of order statistic distributions and multiple-testing adjusted P-values via permutation for one and two-stage genetic association studies. BMC Bioinformatics 9:309
Article PubMed PubMed Central Google Scholar
Cai L, Wheeler E, Kerrison ND, Luan J, Deloukas P, Franks PW et al (2020) Genome-wide association analysis of type 2 diabetes in the EPIC-InterAct study. Sci Data 7:1–6
Chang LC, Lin HM, Sibille E, Tseng GC (2013) Meta-analysis methods for combining multiple expression profiles: comparisons, statistical characterization and an application guideline. BMC Bioinformatics 14:1–15
Che R, Jack JR, Motsinger-Reif AA, Brown CC (2014) An adaptive permutation approach for genome-wide association study: evaluation and recommendations for use. BioData Min 7:1–13
Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ et al (2009) A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 41:527–534
Article CAS PubMed Google Scholar
Diabetes Genetics Initiative of Broad Institute of Harvard and MIT et al et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316(5829):1331–1336
Go MJ, Hwang JY, Kim YJ et al (2013) New susceptibility loci in MYL2, C12orf51 and OAS1 associated with 1-h plasma glucose as predisposing risk factors for type 2 diabetes in the Korean population. J Hum Genet 58(6):362–365
Article CAS PubMed Google Scholar
Good P (2006) Permutation, parametric, and bootstrap tests of hypotheses. Springer Science & Business Media
Hur HJ, Yang HJ, Kim MJ, Lee KH, Kim MS, Park S (2022) Association of Polygenic Variants with type 2 diabetes risk and their Interaction with lifestyles in asians. Nutrients 14:3222
Article CAS PubMed PubMed Central Google Scholar
Khlif H, Chalmers K (2015) A review of meta-analytic research in accounting. J Acc Literature Chalmers 35:1–27
Kim HY (2013) Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restor Dentistry Endodontics 38:52–54
Kim Y, Lee S, Choi S, Jang JY, Park T (2018) Hierarchical structural component modeling of microRNA-mRNA integration analysis. BMC Bioinformatics 19:75
Article PubMed PubMed Central Google Scholar
Lee J, Ahn S, Oh S, Weir B, Park T (2011) SNP-PRAGE: SNP-based parametric robust analysis of gene set enrichment. BMC Syst Biol 5(Suppl 2):S11
Article CAS PubMed PubMed Central Google Scholar
Lee S, Choi S, Kim YJ, Kim BJ, T2d-Genes Consortium, Hwang H, Park T (2016) Pathway-based approach using hierarchical components of collapsed rare variants. Bioinformatics 32:i586–i94
Article CAS PubMed PubMed Central Google Scholar
Leem S, Lee DH, Park T (2018) SPARTA: super-fast permutation approach to approximate extremely low p-values. Int J Data Min Bioinform 21:352–364
Leem S, Huh I, Park T (2020) Enhanced permutation tests via multiple pruning. Front Genet 11:509
Article CAS PubMed PubMed Central Google Scholar
Lou L, Boerwinkle E, Xiong M (2011) Association studies for next-generation sequencing. Genome Res 21:1099–1108
Lin SM, Du P, Huber W, Kibbe WA (2008) Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Res 36(2):e11
Article PubMed PubMed Central Google Scholar
Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363:166–176
Article CAS PubMed Google Scholar
Pahl R, Schäfer H (2010) PERMORY: an LD-exploiting permutation test algorithm for powerful genome-wide association testing. Bioinformatics 26:2093–2100
Article CAS PubMed Google Scholar
Park Y, Wu H (2016) Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics 32:1446–1453
Article CAS PubMed Google Scholar
Roy J, Mitra SK (1957) Unbiassed minimum variance estimation in a class of discrete distributions. Sankhyā: Indian J Stat 18:371–378
Sollis E, Mosaku A, Abid A et al (2023) The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res 51(D1):D977–D985
Article CAS PubMed Google Scholar
Srinivasan S, Chen L, Todd J, Divers J, Gidding S, Chernausek S et al (2021) The first genome-wide association study for type 2 diabetes in youth: the Progress in Diabetes Genetics in Youth (ProDiGY) Consortium. Diabetes 70:996–1005
Article CAS PubMed PubMed Central Google Scholar
Stouffer SA, Suchman EA, DeVinney LC, Star SA, Williams M Jr (1949) The American soldier: Adjustment during army life. (studies in social psychology in world war II). Princeton Univ. Press
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences 102: 15545-50
Thygesen HH, Zwinderman AH (2004) Comparing transformation methods for DNA microarray data. BMC Bioinformatics 5:77
Article PubMed PubMed Central Google Scholar
Xu CJ, Tachmazidou I, Walter K, Ciampi A, Zeggini E, Greenwood CMT, UK10K Consortium (2014) Estimating genome-wide significance for whole‐genome sequencing studies. Genet Epidemiol 38:281–290
Article PubMed PubMed Central Google Scholar
Zaykin DV (2011) Optimally weighted Z-test is a powerful method for combining probabilities in meta‐analysis. J Evol Biol 24:1836–1841
Article CAS PubMed PubMed Central Google Scholar
Zeggini E, Weedon MN, Lindgren CM et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316(5829):1336–1341
Article CAS PubMed PubMed Central Google Scholar
Zimmerman DW (2004) Inflation of type I error rates by unequal variances associated with parametric, nonparametric, and rank-transformation tests. Psicologica: Int J Methodol Experimental Psychol 25:103–133
Comments (0)