Enhanced adaptive permutation test with negative binomial distribution in genome-wide omics datasets

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B (Methodol) 57:289–300

Article  Google Scholar 

Browning BL (2008) PRESTO: rapid calculation of order statistic distributions and multiple-testing adjusted P-values via permutation for one and two-stage genetic association studies. BMC Bioinformatics 9:309

Article  PubMed  PubMed Central  Google Scholar 

Cai L, Wheeler E, Kerrison ND, Luan J, Deloukas P, Franks PW et al (2020) Genome-wide association analysis of type 2 diabetes in the EPIC-InterAct study. Sci Data 7:1–6

Article  Google Scholar 

Chang LC, Lin HM, Sibille E, Tseng GC (2013) Meta-analysis methods for combining multiple expression profiles: comparisons, statistical characterization and an application guideline. BMC Bioinformatics 14:1–15

Article  CAS  Google Scholar 

Che R, Jack JR, Motsinger-Reif AA, Brown CC (2014) An adaptive permutation approach for genome-wide association study: evaluation and recommendations for use. BioData Min 7:1–13

Article  Google Scholar 

Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ et al (2009) A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 41:527–534

Article  CAS  PubMed  Google Scholar 

Diabetes Genetics Initiative of Broad Institute of Harvard and MIT et al et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316(5829):1331–1336

Article  Google Scholar 

Go MJ, Hwang JY, Kim YJ et al (2013) New susceptibility loci in MYL2, C12orf51 and OAS1 associated with 1-h plasma glucose as predisposing risk factors for type 2 diabetes in the Korean population. J Hum Genet 58(6):362–365

Article  CAS  PubMed  Google Scholar 

Good P (2006) Permutation, parametric, and bootstrap tests of hypotheses. Springer Science & Business Media

Hur HJ, Yang HJ, Kim MJ, Lee KH, Kim MS, Park S (2022) Association of Polygenic Variants with type 2 diabetes risk and their Interaction with lifestyles in asians. Nutrients 14:3222

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khlif H, Chalmers K (2015) A review of meta-analytic research in accounting. J Acc Literature Chalmers 35:1–27

Article  Google Scholar 

Kim HY (2013) Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restor Dentistry Endodontics 38:52–54

Article  Google Scholar 

Kim Y, Lee S, Choi S, Jang JY, Park T (2018) Hierarchical structural component modeling of microRNA-mRNA integration analysis. BMC Bioinformatics 19:75

Article  PubMed  PubMed Central  Google Scholar 

Lee J, Ahn S, Oh S, Weir B, Park T (2011) SNP-PRAGE: SNP-based parametric robust analysis of gene set enrichment. BMC Syst Biol 5(Suppl 2):S11

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee S, Choi S, Kim YJ, Kim BJ, T2d-Genes Consortium, Hwang H, Park T (2016) Pathway-based approach using hierarchical components of collapsed rare variants. Bioinformatics 32:i586–i94

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leem S, Lee DH, Park T (2018) SPARTA: super-fast permutation approach to approximate extremely low p-values. Int J Data Min Bioinform 21:352–364

Article  Google Scholar 

Leem S, Huh I, Park T (2020) Enhanced permutation tests via multiple pruning. Front Genet 11:509

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lou L, Boerwinkle E, Xiong M (2011) Association studies for next-generation sequencing. Genome Res 21:1099–1108

Article  Google Scholar 

Lin SM, Du P, Huber W, Kibbe WA (2008) Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Res 36(2):e11

Article  PubMed  PubMed Central  Google Scholar 

Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363:166–176

Article  CAS  PubMed  Google Scholar 

Pahl R, Schäfer H (2010) PERMORY: an LD-exploiting permutation test algorithm for powerful genome-wide association testing. Bioinformatics 26:2093–2100

Article  CAS  PubMed  Google Scholar 

Park Y, Wu H (2016) Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics 32:1446–1453

Article  CAS  PubMed  Google Scholar 

Roy J, Mitra SK (1957) Unbiassed minimum variance estimation in a class of discrete distributions. Sankhyā: Indian J Stat 18:371–378

Google Scholar 

Sollis E, Mosaku A, Abid A et al (2023) The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res 51(D1):D977–D985

Article  CAS  PubMed  Google Scholar 

Srinivasan S, Chen L, Todd J, Divers J, Gidding S, Chernausek S et al (2021) The first genome-wide association study for type 2 diabetes in youth: the Progress in Diabetes Genetics in Youth (ProDiGY) Consortium. Diabetes 70:996–1005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stouffer SA, Suchman EA, DeVinney LC, Star SA, Williams M Jr (1949) The American soldier: Adjustment during army life. (studies in social psychology in world war II). Princeton Univ. Press

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences 102: 15545-50

Thygesen HH, Zwinderman AH (2004) Comparing transformation methods for DNA microarray data. BMC Bioinformatics 5:77

Article  PubMed  PubMed Central  Google Scholar 

Xu CJ, Tachmazidou I, Walter K, Ciampi A, Zeggini E, Greenwood CMT, UK10K Consortium (2014) Estimating genome-wide significance for whole‐genome sequencing studies. Genet Epidemiol 38:281–290

Article  PubMed  PubMed Central  Google Scholar 

Zaykin DV (2011) Optimally weighted Z-test is a powerful method for combining probabilities in meta‐analysis. J Evol Biol 24:1836–1841

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeggini E, Weedon MN, Lindgren CM et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316(5829):1336–1341

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zimmerman DW (2004) Inflation of type I error rates by unequal variances associated with parametric, nonparametric, and rank-transformation tests. Psicologica: Int J Methodol Experimental Psychol 25:103–133

Google Scholar 

Comments (0)

No login
gif