Transcriptome analysis of tilapia streptococcus agalactiae in response to baicalin

Ahn S-J, Rice KC, Oleas J, Bayles KW, Burne RA (2010) The Streptococcus mutans cid and Lrg systems modulate virulence traits in response to multiple environmental signals. Microbiology 156:3136–3147. https://doi.org/10.1099/mic.0.039586-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahn S-J, Gu T, Koh J, Rice KC (2017) Remodeling of the Streptococcus mutans proteome in response to LrgAB and external stresses. Sci Rep 7:14063. https://doi.org/10.1038/s41598-017-14324-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahn S-J, Deep K, Turner ME, Ishkov I, Waters A, Hagen SJ, Rice KC (2019) Characterization of LrgAB as a stationary phase-specific pyruvate uptake system in Streptococcus mutans. BMC Microbiol 19:223. https://doi.org/10.1186/s12866-019-1600-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Armistead B, Whidbey C, Iyer LM, Herrero-Foncubierta P, Quach P, Haidour A, Aravind L, Cuerva JM, Jaspan HB, Rajagopal L (2020) The cyl genes reveal the Biosynthetic and Evolutionary origins of the Group B Streptococcus hemolytic lipid, Granadaene. Front Microbiol 10:3123. https://doi.org/10.3389/fmicb.2019.03123

Article  PubMed  PubMed Central  Google Scholar 

Brunskill EW, Bayles KW (1996) Identification of LytSR-regulated genes from Staphylococcus aureus. J Bacteriol 178:5810–5812. https://doi.org/10.1128/jb.178.19.5810-5812.1996

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cabello FC, Godfrey HP, Buschmann AH, Dölz HJ (2016) Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect Dis 16:e127–e133. https://doi.org/10.1016/S1473-3099(16)00100-6

Article  PubMed  Google Scholar 

Chang J (2000) Medicinal herbs: drugs or dietary supplements? Biochem Pharmacol 59:211–219. https://doi.org/10.1016/S0006-2952(99)00243-9

Article  CAS  PubMed  Google Scholar 

Chen M, Li L-P, Wang R, Liang W-W, Huang Y, Li J, Lei A-Y, Huang W-Y, Gan X (2012) PCR detection and PFGE genotype analyses of streptococcal clinical isolates from tilapia in China. Vet Microbiol 159:526–530. https://doi.org/10.1016/j.vetmic.2012.04.035

Article  CAS  PubMed  Google Scholar 

Citarasu T (2010) Herbal biomedicines: a new opportunity for aquaculture industry. Aquacultrue Int 18:403–414. https://doi.org/10.1007/s10499-009-9253-7

Article  Google Scholar 

Dawson LF, Donahue EH, Cartman ST, Barton RH, Bundy J, McNerney R, Minton NP, Wren BW (2011) The analysis of para-cresol production and tolerance in Clostridium difficile 027 and 012 strains. BMC Microbiol 11:86. https://doi.org/10.1186/1471-2180-11-86

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doran KS, Liu GY, Nizet V (2003) Group B streptococcal β-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis. J Clin Invest 112:736–744. https://doi.org/10.1172/JCI200317335

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elliott JA, Facklam RR, Richter CB (1989) Whole-cell protein patterns of Nonhemolytic Group B, Type Lb, Streptococci isolated from humans, mice, cattle, frogs, and Fish. J Clin Microbiol 28:628–630. https://doi.org/10.1128/jcm.28.3.628-630.1990

Evans JJ, Klesius PH, Gilbert PM, Shoemaker CA, Al Sarawi MA, Landsberg J, Duremdez R, Al Marzouk A, Zenki A, S (2002) Characterization of beta-haemolytic Group B Streptococcus agalactiae in cultured seabream, Sparus auratus L., and wild mullet, Liza klunzingeri (Day), in Kuwait. J Fish Dis 25:505–513. https://doi.org/10.1046/j.1365-2761.2002.00392.x

Article  Google Scholar 

Ge H, Wang Y-F, Xu J, Gu Q, Liu H-B, Xiao P-G, Zhou J, Liu Y, Yang Z, Su H (2010) Anti-influenza agents from traditional Chinese medicine. Nat Prod Rep 27:1758. https://doi.org/10.1039/c0np00005a

Article  CAS  PubMed  Google Scholar 

Gottschalk B, Bröker G, Kuhn M, Aymanns S, Gleich-Theurer U, Spellerberg B (2006) Transport of Multidrug Resistance substrates by the Streptococcus agalactiae Hemolysin Transporter. J Bacteriol 188:5984–5992. https://doi.org/10.1128/JB.00768-05

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. https://doi.org/10.1038/nbt.1883

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hensler ME, Miyamoto S, Nizet V (2008) Group B Streptococcal β-Hemolysin/Cytolysin directly impairs cardiomyocyte viability and function. PLoS ONE 3:e2446. https://doi.org/10.1371/journal.pone.0002446

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hensler ME, Liu GY, Sobczak S, Benirschke K, Nizet V, Heldt GP (2005) Virulence role of Group B Streptococcus b-Hemolysin/Cytolysin in a neonatal rabbit model of early-onset pulmonary infection. J Infect Dis 191:1287–1291. https://doi.org/10.1086/428946

Hernández E, Figueroa J, Iregui C (2009) Streptococcosis on a red tilapia, Oreochromis sp., farm: a case study. J Fish Dis 32:247–252. https://doi.org/10.1111/j.1365-2761.2008.00981.x

Article  PubMed  Google Scholar 

Hu Q, Zhang W, Wu Z, Tian X, Xiang J, Li L, Li Z, Peng X, Wei S, Ma X, Zhao Y (2021) Baicalin and the liver-gut system: pharmacological bases explaining its therapeutic effects. Pharmacol Res 165:105444. https://doi.org/10.1016/j.phrs.2021.105444

Article  CAS  PubMed  Google Scholar 

Jia M, Wei M, Zhang Y, Zheng C (2020) Transcriptomic analysis of Streptococcus suis in response to Ferrous Iron and Cobalt Toxicity. Genes 11:1035. https://doi.org/10.20944/preprints202008.0708.v1.

Jian J, Wu Z (2003) Effects of traditional Chinese medicine on nonspecific immunity and disease resistance of large yellow croaker, Pseudosciaena crocea (Richardson). Aquaculture 218:1–9. https://doi.org/10.1016/S0044-8486(02)00192-8

Article  Google Scholar 

Jones N, Bohnsack JF, Takahashi S, Oliver KA, Chan M-S, Kunst F, Glaser P, Rusniok C, Crook DWM, Harding RM, Bisharat N, Spratt BG (2003) Multilocus sequence typing system for Group B Streptococcus. J Clin Microbiol 41:2530–2536. https://doi.org/10.1128/JCM.41.6.2530-2536.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Larsson C, Stålhammar-Carlemalm M, Lindahl G (1996) Experimental vaccination against Group B Streptococcus, an Encapsulated Bacterium, with highly purified preparations of cell surface proteins Rib and α. Infect Immun 64:3518–3526. https://doi.org/10.1128/IAI.64.9.3518-3523.1996.

Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323. https://doi.org/10.1186/1471-2105-12-323

Lima MC, Paiva De Sousa C, Fernandez-Prada C, Harel J, Dubreuil JD, De Souza EL (2019) A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microb Pathog 130:259–270. https://doi.org/10.1016/j.micpath.2019.03.025

Article  CAS  PubMed  Google Scholar 

Liu G, Zhang W, Lu C (2012) Complete genome sequence of Streptococcus agalactiae GD201008-001, isolated in China from Tilapia with Meningoencephalitis. J Bacteriol 194:6653–6653. https://doi.org/10.1128/JB.01788-12

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mian GF, Godoy DT, Leal CAG, Yuhara TY, Costa GM, Figueiredo HCP (2009) Aspects of the natural history and virulence of S. agalactiae infection in Nile tilapia. Vet Microbiol 136:180–183. https://doi.org/10.1016/j.vetmic.2008.10.016

Article  CAS  PubMed  Google Scholar 

Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC, Gopinath S, Naidu N, Choudhury B, Weimer BC, Monack DM, Sonnenburg JL (2013) Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502:96–99. https://doi.org/10.1038/nature12503

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patton TG, Yang S-J, Bayles KW (2006) The role of proton motive force in expression of the Staphylococcus aureus cid and lrg operons: ∆Ψ-induced gene expression in Staphylococcus aureus. Mol Microbiol 59:1395–1404. https://doi.org/10.1111/j.1365-2958.2006.05034.x

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif