Cell Division Cycle 42 Improves Renal Functions, Fibrosis, Th1/Th17 Infiltration and Inflammation to Some Degree in Diabetic Nephropathy

Hu, Q., Y. Chen, X. Deng, et al. 2023. Diabetic nephropathy: Focusing on pathological signals, clinical treatment, and dietary regulation. Biomedicine and Pharmacotherapy 159:114252.

Article  PubMed  Google Scholar 

Selby, N.M., and M.W. Taal. 2020. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines. Diabetes, Obesity and Metabolism 22 (Suppl 1): 3–15.

Article  PubMed  Google Scholar 

Deng, Y., N. Li, Y. Wu, et al. 2021. Global, regional, and national burden of diabetes-related chronic kidney disease from 1990 to 2019. Front Endocrinol (Lausanne) 12:672350.

Article  PubMed  Google Scholar 

Cervantes, C.E., M. Hanouneh, and B.G. Jaar. 2022. From screening to treatment: The new landscape of diabetic kidney disease. BMC Medicine 20:329.

Article  PubMed  PubMed Central  Google Scholar 

Chinese Diabetes Society, National Office of Basic Public Health Service Program for Primary Diabetes Care. 2023. National technical guidelines for the prevention and treatment of diabetic kidney disease in primary care. Zhonghua Nei Ke Za Zhi 62: 1394–1405.

Google Scholar 

Albakr, R.B., V.S. Sridhar, and D.Z.I. Cherney. 2023. Novel Therapies in Diabetic Kidney Disease and Risk of Hyperkalemia: A Review of the Evidence From Clinical Trials. American Journal of Kidney Diseases 82:737–742.

Article  PubMed  Google Scholar 

Blonde, L., G.E. Umpierrez, S.S. Reddy, et al. 2022. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan-2022 Update. Endocrine Practice 28:923–1049.

Article  PubMed  PubMed Central  Google Scholar 

Gupta, S., M. Dominguez, and L. Golestaneh. 2023. Diabetic Kidney Disease: An Update. Medical Clinics of North America 107:689–705.

Article  PubMed  Google Scholar 

Ming, J., S. Sana, and X. Deng. 2022. Identification of copper-related biomarkers and potential molecule mechanism in diabetic nephropathy. Front Endocrinol (Lausanne) 13:978601.

Article  PubMed  Google Scholar 

Xiong, Y., and L. Zhou. 2019. The Signaling of Cellular Senescence in Diabetic Nephropathy. Oxidative Medicine and Cellular Longevity 2019:7495629.

Article  PubMed  PubMed Central  Google Scholar 

Chen, J., Q. Liu, J. He, et al. 2022. Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target. Frontiers in Immunology 13:958790.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tuttle, K.R., R. Agarwal, C.E. Alpers, et al. 2022. Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney International 102:248–260.

Article  CAS  PubMed  Google Scholar 

Mosaddeghzadeh, N., and M.R. Ahmadian. 2021. The RHO Family GTPases: mechanisms of regulation and signaling. Cells 10:1831.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalim, K.W., J.Q. Yang, M. Wunderlich, et al. 2022. Targeting of Cdc42 GTPase in regulatory T cells unleashes antitumor T-cell immunity. Journal for Immunotherapy of Cancer 10:e004806.

Article  PubMed  PubMed Central  Google Scholar 

Zhang, D., W. Tang, H. Niu, et al. 2024. Monogenic deficiency in murine intestinal Cdc42 leads to mucosal inflammation that induces crypt dysplasia. Genes and Diseases 11:413–429.

Article  CAS  PubMed  Google Scholar 

Blattner, S.M., J.B. Hodgin, M. Nishio, et al. 2013. Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury. Kidney International 84:920–930.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, Q.Y., X.N. Lai, X.L. Qian, et al. 2019. Cdc42: A Novel Regulator of Insulin Secretion and Diabetes-Associated Diseases. International Journal of Molecular Sciences 20:179.

Article  PubMed  PubMed Central  Google Scholar 

Yu, H., J. Ma, Y. Gu, et al. 2024. Serum cell division cycle 42 reflects the development and progression of diabetic nephropathy in patients with diabetes mellitus. Experimental and Therapeutic Medicine 27:185.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng, S., N. Zhao, C. Feng, et al. 2024. Cell division cycle 42 attenuates high glucose-treated renal tubular epithelial cell apoptosis, fibrosis, and inflammation, but activates the PAK1/AKT pathway. Clinical and Experimental Nephrology 28:513–521.

Article  CAS  PubMed  Google Scholar 

Hou, B., Y. Li, X. Li, et al. 2020. HGF protected against diabetic nephropathy via autophagy-lysosome pathway in podocyte by modulating PI3K/Akt-GSK3beta-TFEB axis. Cellular Signalling 75:109744.

Article  CAS  PubMed  Google Scholar 

Nutter, F.H., J.L. Haylor, and A. Khwaja. 2015. Inhibiting ERK Activation with CI-1040 Leads to Compensatory Upregulation of Alternate MAPKs and Plasminogen Activator Inhibitor-1 following Subtotal Nephrectomy with No Impact on Kidney Fibrosis. PLoS One 10:e0137321.

Article  PubMed  PubMed Central  Google Scholar 

Arifin, W.N., and W.M. Zahiruddin. 2017. Sample Size Calculation in Animal Studies Using Resource Equation Approach. Malays J Med Sci 24:101–105.

Article  PubMed  PubMed Central  Google Scholar 

Han, Y.C., S.Q. Tang, Y.T. Liu, et al. 2021. AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice. Cell Death and Disease 12:925.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scott, R.P., S.P. Hawley, J. Ruston, et al. 2012. Podocyte-specific loss of Cdc42 leads to congenital nephropathy. Journal of the American Society of Nephrology 23:1149–1154.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, Z., L. Zhang, Y. Chen, et al. 2016. Cdc42 deficiency induces podocyte apoptosis by inhibiting the Nwasp/stress fibers/YAP pathway. Cell Death and Disease 7:e2142.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sviridov, D., and N. Mukhamedova. 2018. Cdc42 - A tryst between host cholesterol metabolism and infection. Small GTPases 9:237–241.

Article  CAS  PubMed  Google Scholar 

Jiang, S., C.M. Xu, S. Yao, et al. 2022. Cdc42 upregulation under high glucose induces podocyte apoptosis and impairs beta-cell insulin secretion. Front Endocrinol (Lausanne) 13:905703.

Article  PubMed  Google Scholar 

Xiao, X.H., Q.Y. Huang, X.L. Qian, et al. 2019. Cdc42 Promotes ADSC-Derived IPC Induction, Proliferation, And Insulin Secretion Via Wnt/β-Catenin Signaling. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 12:2325–2339.

Article  CAS  PubMed  Google Scholar 

Jiang, R., X. Tang, J. Pan, et al. 2022. CDC42 governs normal oviduct multiciliogenesis through activating AKT to ensure timely embryo transport. Cell Death and Disease 13:757.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, G., Y. Wang, X.B. Guo, et al. 2022. CDC42 Regulates Cell Proliferation and Apoptosis in Bladder Cancer via the IQGAP3-Mediated Ras/ERK Pathway. Biochemical Genetics 60:2383–2398.

Article  CAS  PubMed  Google Scholar 

Zhang, Y., D. Jin, X. Kang, et al. 2021. Signaling Pathways Involved in Diabetic Renal Fibrosis. Front Cell Dev Biol 9:696542.

Article  PubMed  PubMed Central  Google Scholar 

Sun, D., J. Guo, W. Liang, et al. 2023. Anlotinib Alleviates Renal Fibrosis via Inhibition of the ERK and AKT Signaling Pathways. Oxidative Medicine and Cellular Longevity 2023:1686804.

Comments (0)

No login
gif