Style harmonization of panoramic radiography using deep learning

American Dental Association Council on Scientific Affairs. The use of dental radiographs: update and recommendations. J Am Dent Assoc. 2006;137:1304–12.

Article  Google Scholar 

Espelid I, Mejàre I, Weerheijm K. EAPD guidelines for use of radiographs in children. Eur J Paediatr Dent. 2003;4:40–8.

CAS  PubMed  Google Scholar 

Rushton VE, Horner K, Worthington HV. Routine panoramic radiography of new adult patients in general dental practice: relevance of diagnostic yield to treatment and identification of radiographic selection criteria. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;93:488–95.

Article  CAS  PubMed  Google Scholar 

Choi JW. Assessment of panoramic radiography as a national oral examination tool: review of the literature. Imaging Sci Dent. 2011;41:1–6.

Article  PubMed  PubMed Central  Google Scholar 

White SC, Pharoah MJ. Oral radiology-e-book: principles and interpretation. New York: Elsevier Health Sciences; 2014.

Google Scholar 

Sabarudin A, Tiau YJ. Image quality assessment in panoramic dental radiography: a comparative study between conventional and digital systems. Quan Imaging Med Surg. 2013;3:43–8.

Google Scholar 

Svenson B, Båth M, Karlsson R. Can adaptive post-processing of storage phosphor plate panoramic radiographs provide better image quality? A comparison of anatomical image quality of panoramic radiographs before and after adaptive processing. Acta Odontol Scand. 2019;77:328–33.

Article  CAS  PubMed  Google Scholar 

Kim HS, Ha EG, Lee A, Choi YJ, Jeon KJ, Han SS, et al. Refinement of image quality in panoramic radiography using a generative adversarial network. Dentomaxillofac Radiol. 2023;52:20230007.

Article  PubMed  PubMed Central  Google Scholar 

Kaeppler G, Axmann-Krcmar D, Reuter I, Meyle J, Gómez-Román G. A clinical evaluation of some factors affecting image quality in panoramic radiography. Dentomaxillofac Radiol. 2000;29:81–4.

Article  CAS  PubMed  Google Scholar 

Svenson B, Larsson L, Båth M. Optimization of exposure in panoramic radiography while maintaining image quality using adaptive filtering. Acta Odontol Scand. 2016;74:229–35.

Article  PubMed  Google Scholar 

Nardi C, Calistri L, Pietragalla M, Vignoli C, Lorini C, Berti V, et al. Electronic processing of digital panoramic radiography for the detection of apical periodontitis. Radiol Med. 2020;125:145–54.

Article  PubMed  Google Scholar 

Mohammad-Rahimi H, Vinayahalingam S, Mahmoudinia E, Soltani P, Bergé SJ, Krois J, et al. Super-resolution of dental panoramic radiographs using deep learning: A pilot study. Diagnostics (Basel). 2023;13:996.

Article  PubMed  Google Scholar 

Ryu K, Lee C, Han Y, Pang S, Kim YH, Choi C, et al. Multi-planar 2.5D U-Net for image quality enhancement of dental cone-beam CT. PLOS ONE. 2023;18:e0285608.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ueda T, Ohno Y, Yamamoto K, Iwase A, Fukaba T, Hanamatsu S, et al. Compressed sensing and deep learning reconstruction for women’s pelvic MRI denoising: utility for improving image quality and examination time in routine clinical practice. Eur J Radiol. 2021;134: 109430.

Article  PubMed  Google Scholar 

Boita J, van Engen RE, Mackenzie A, Tingberg A, Bosmans H, Bolejko A, et al. How does image quality affect radiologists; perceived ability for image interpretation and lesion detection in digital mammography? Eur Rad. 2021;31:5335–43.

Article  Google Scholar 

Warren LM, Halling-Brown MD, Looney PT, Dance DR, Wallis MG, Given-Wilson RM, et al. Image processing can cause some malignant soft-tissue lesions to be missed in digital mammography images. Clin Rad. 2017;72(799):e1–8.

Google Scholar 

Ha E-G, Jeon KJ, Kim YH, Kim JY, Han SS. Automatic detection of mesiodens on panoramic radiographs using artificial intelligence. Sci Rep. 2021;11:23061.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vigil MSA, Bharathi VS. Detection of periodontal bone loss in mandibular area from dental panoramic radiograph using image processing techniques. Concurr Computat Pract Exper. 2021;33: e6323.

Article  Google Scholar 

Zhu JY, Park T, Isola P, Efros AA, Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proc. IEEE Int. Conf. Comput. Vis. 2017. pp. 2242–51.

Choi Y, Choi M, Kim M, Ha JW, Kim S, Choo J. Stargan: unified generative adversarial networks for multi-domain image-to-image translation. In: IEEE CVF. 2018. pp. 8789−97.

Baek K, Choi Y, Uh Y, Yoo J, Shim H. Rethinking the truly unsupervised image-to-image translation. In: Proc IEEE Int Conf Comput Vis. 2021. pp. 14134–43.

Choi Y, Uh Y, Yoo J, Ha JW. Stargan v2: diverse image synthesis for multiple domains. In: Proc IEEE Int Conf Comput Vis. 2020. pp. 8185–94.

Yoo J, Uh Y, Chun S, Kang B, Ha JW. Photorealistic style transfer via wavelet transforms. In: Proc IEEE Int Conf Comput Vis. 2019. pp. 9035–44.

Park J, Kim S, Kim S, Cho S, Yoo J, Uh Y, et al. LANIT: language-driven image-to-image translation for unlabeled data. In: IEEE CVF. 2023. pp. 23401−11.

Liu MY, Breuel T, Kautz J. Unsupervised image-to-image translation networks. In: NIPS. 2017. pp. 700−8.

Liang J, Zeng H, Zhang L. High-resolution photorealistic image translation in real-time: A laplacian pyramid translation network. In: IEEE CVF. 2021. pp. 9387–95.

Park T, Efros AA, Zhang R, Zhu JY. Contrastive learning for unpaired image-to-image translation. In: Vevaldi A, Bischof H, Brox T, Frahm JM, editors. Computer vision–ECCV 2020. ECCV 2020. Lecture notes in computer science, vol. 12354. Cham: Springer; 2020. p. 319–45.

Google Scholar 

Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: NIPS. 2014. pp. 2672–80.

Oktay O, Schlemper J, Le Folgoc L, Lee M, Heinrich M, Misawa K, et al. Attention U-Net: learning where to look for the pancreas. 2018. arXiv preprint. arXiv:1804.03999. Accessed 24 Sept 2024

Osakabe T, Tanaka M, Kinoshita Y, Kiya H. CycleGAN without checkerboard artifacts for counter-forensics of fake-image detection. In: Proc SPIE 11766 IWAIT. 2021. pp. 51−5.

Taigman Y, Polyak A, Wolf L. Unsupervised cross-domain image generation. 2016. arXiv preprint. arXiv:1611.02200. Accessed 24 Sept 2024

Yuan Y, Liu S, Zhang J, Zhang Y, Dong C, Lin L. Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks. In: CVPR. 2018. pp. 81400−9.

Mescheder L, Geiger A, Nowozin S. Which training methods for GANs do actually converge? In: PMLR. 2018. pp. 3481−90.

Wang J, Yang C, Xu Y, Shen Y, Li H, Zhou B. Improving GAN equilibrium by raising spatial awareness. In: IEEE CVF. 2022. pp. 11275−83.

Heusel M, Ramsauer H, Unterthiner T, Nessler B. GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: NIPS 2017. 2017. pp. 6629−40.

Zhang R, Isola P, Efros AA, Shechtman E, Wang O. The unreasonable effectiveness of deep features as a perceptual metric. In: IEEE CVF. 2018. pp. 586−95.

Lee SB, Hong Y, Cho YJ, Jeong D, Lee J, Yoon SH, et al. Deep learning-based computed tomography image standardization to improve generalizability of deep learning-based hepatic segmentation. Korean J Radiol. 2023;24:294–304.

Article  PubMed  PubMed Central  Google Scholar 

Lambert PM, Gorman LM, Karimnamazi H, Kuthy RA. Technique for standardization of panoramic radiographs using helium-neon laser guided positioning. Implant Dent. 1993;2:251–6.

Article  CAS  PubMed  Google Scholar 

Hamanaka EF, Poi WR, Salzedas LM, Alves LC, Panzarini SR, Sonoda CK, et al. A method for the geometric standardization of intraoral radiographs for long-term follow up of replanted teeth: a case report. Dent Traumatol. 2013;29:121–6.

Article  PubMed  Google Scholar 

Zhang Y, Huang N, Tang F, Huang H, Ma C, Dong W, et al. Inversion-based style transfer with diffusion models. In: IEEE CVF. 2023. pp. 10146−56.

Comments (0)

No login
gif