Exploring the inhibitory activity and mechanism on lipid production in 3T3-L1 cells by hot water extract derived from Acacia confusa flowers

Lin HY, Chang TC, Chang ST (2018) A review of antioxidant and pharmacological properties of phenolic compounds in Acacia confusa. J Tradit Compl Med 8:443–450. https://doi.org/10.1016/j.jtcme.2018.05.002

Article  Google Scholar 

Lin HY, Chang ST (2013) Antioxidant potency of phenolic phytochemicals from the root extract of Acacia confusa. Ind Crop Prod 49:871–878. https://doi.org/10.1016/j.indcrop.2013.07.001

Article  CAS  Google Scholar 

Chang ST, Wu JH, Wang SY, Kang PL, Yang NS, Shyur LF (2001) Antioxidant activity of extracts from Acacia confusa bark and heartwood. J Agr Food Chem 49:3420–3424. https://doi.org/10.1021/jf0100907

Article  CAS  Google Scholar 

Wu JH, Huang CY, Tung YT, Chang ST (2008) Online RP-HPLC-DPPH screening method for detection of radical-scavenging phytochemicals from flowers of Acacia confusa. J Agr Food Chem 56:328–332. https://doi.org/10.1021/jf072314c

Article  CAS  Google Scholar 

Tung YT, Wu JH, Huang CC, Peng HC, Chen YL, Yang SC, Chang ST (2009) Protective effect of Acacia confusa bark extract and its active compound gallic acid against carbon tetrachloride-induced chronic liver injury in rats. Food Chem Toxicol 47:1385–1392. https://doi.org/10.1016/j.fct.2009.03.021

Article  CAS  PubMed  Google Scholar 

Tung YT, Chang ST (2010) Inhibition of xanthine oxidase by Acacia confusa extracts and their phytochemicals. J Agr Food Chem 58:781–786. https://doi.org/10.1021/jf901498q

Article  CAS  Google Scholar 

Tung YT, Hsu CA, Chen CS, Yang SC, Huang CC, Chang ST (2010) Phytochemicals from Acacia confusa heartwood extracts reduce serum uric acid levels in oxonate-induced mice: their potential use as xanthine oxidase inhibitors. J Agr Food Chem 58:9936–9941. https://doi.org/10.1021/jf102689k

Article  CAS  Google Scholar 

Wu JH, Tung YT, Chien SC, Wang SY, Kuo YH, Shyur LF, Chang ST (2008) Effect of phytocompounds from the heartwood of Acacia confusa on inflammatory mediator production. J Agr Food Chem 56:1567–1573. https://doi.org/10.1021/jf072922s

Article  CAS  Google Scholar 

Tung YT, Chang WC, Chen PS, Chang TC, Chang ST (2011) Ultrasound-assisted extraction of phenolic antioxidants from Acacia confusa flowers and buds. J Sep Sci 34:844–851. https://doi.org/10.1002/jssc.201000820

Article  CAS  PubMed  Google Scholar 

El-Kashak W, Hamed AR, El-Raey M, Elshamy AI, Abd-Ellatef GEF (2016) Antiproliferative, antioxidant and antimicrobial activities of phenolic compounds from Acrocarpus fraxinifolius. J Chem Pharm Res 8:520–528. https://doi.org/10.1186/s13568-019-0924-0

Article  CAS  Google Scholar 

Shen CJ, Chen CK, Lee SS (2009) Polar constituents from Sageretia thea leaf characterized by HPLC-SPE-NMR assisted approaches. J Chin Chem Soc-Taip 56:1002–1009. https://doi.org/10.1002/jccs.200900146

Article  CAS  Google Scholar 

Agrawal PK (1992) NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry 31:3307–3330. https://doi.org/10.1016/0031-9422(92)83678-R

Article  CAS  PubMed  Google Scholar 

Da Costa EV, Moreira ASP, Nunes FM, Coimbra MA, Evtuguin DV, Domingues MRM (2007) Differentiation of isomeric pentose disaccharides by electrospray ionization tandem mass spectrometry and discriminant analysis. J Am Soc Mass Spectrom 18:1279–1292. https://doi.org/10.1002/rcm.6415

Article  CAS  Google Scholar 

Rosa W, da Silva DO, de Oliveira SPP, Caldas IS, Murgu M, Lago JHG, Sartorelli P, Dias DF, Chagas-Paula DA, Soares MG (2021) In vivo anti-inflammatory activity of Fabaceae species extracts screened by a new ex vivo assay using human whole blood. Phytochem Anal 32:859–883. https://doi.org/10.1002/pca.3031

Article  CAS  PubMed  Google Scholar 

Kawser Hossain M, Abdal Dayem A, Han J, Yin Y, Kim K, Kumar Saha S, Yang GM, Choi HY, Cho SG (2016) Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int J Mol Sci 17:569. https://doi.org/10.3390/ijms17040569

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manaharan T, Ming CH, Palanisamy UD (2013) Syzygium aqueum leaf extract and its bioactive compounds enhances pre-adipocyte differentiation and 2-NBDG uptake in 3T3-L1 cells. Food Chem 136:354–363. https://doi.org/10.1016/j.foodchem.2012.08.056

Article  CAS  PubMed  Google Scholar 

Lee MS, Kim Y (2020) Chrysanthemum morifolium flower extract inhibits adipogenesis of 3T3-L1 cells via AMPK/SIRT1 pathway activation. Nutrients 12:2726. https://www.mdpi.com/2072-6643/12/9/2726.

Chayaratanasin P, Caobi A, Suparpprom C, Saenset S, Pasukamonset P, Suanpairintr N, Barbieri MA, Adisakwattana S (2019) Clitoria ternatea flower petal extract inhibits adipogenesis and lipid accumulation in 3T3-L1 preadipocytes by downregulating adipogenic gene expression. Molecules 24:1894. https://www.mdpi.com/1420-3049/24/10/1894.

Lee D, Kim JY, Qi Y, Park S, Lee HL, Yamabe N, Kim H, Jang DS, Kang KS (2021) Phytochemicals from the flowers of Prunus persica (L.) Batsch: Anti-adipogenic effect of mandelamide on 3T3-L1 preadipocytes. Bioorg Med Chem Lett 49:128326. https://doi.org/10.1016/j.bmcl.2021.128326

Article  CAS  PubMed  Google Scholar 

Cho Y, Ariga M, Uchijima Y, Kimura K, Rho JY, Furuhata Y, Hakuno F, Yamanouchi K, Nishihara M, Takahashi SI (2006) The novel roles of liver for compensation of insulin resistance in human growth hormone transgenic rats. Endocrinology 147(5374–5384):5374–5384. https://doi.org/10.1210/en.2006-0518

Article  CAS  PubMed  Google Scholar 

Lee J, Jung E, Lee J, Kim S, Huh S, Kim Y, Kim Y, Byun SY, Kim YS, Park D (2009) Isorhamnetin represses adipogenesis in 3T3-L1 cells. Obesity 17:226–232. https://doi.org/10.1038/oby.2008.472

Article  CAS  PubMed  Google Scholar 

Inokawa A, Inuzuka T, Takahara T, Shibata H, Maki M (2016) Tubby-like protein superfamily member PLSCR3 functions as a negative regulator of adipogenesis in mouse 3T3-L1 preadipocytes by suppressing induction of late differentiation stage transcription factors. Bioscience Rep 36:e00287. https://doi.org/10.1042/bsr20150215

Article  Google Scholar 

Qiao LP, MacLean PS, You HN, Schaack J, Shao JH (2006) Knocking down liver CCAAT/enhancer-binding protein α by adenovirus-transduced silent interfering ribonucleic acid improves hepatic gluconeogenesis and lipid homeostasis in db/db mice. Endocrinology 147:3060–3069. https://doi.org/10.1210/en.2005-1507

Article  CAS  PubMed  Google Scholar 

Li KK, Liu CL, Shiu HT, Wong HL, Siu WS, Zhang C, Han XQ, Ye CX, Leung PC, Ko CH (2016) Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes. Sci Rep 6:20172. https://doi.org/10.1038/srep20172

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pachikian BD, Neyrinck AM, Cani PD, Portois L, Deldicque L, De Backer FC, Bindels LB, Sohet FM, Malaisse WJ, Francaux M, Carpentier YA, Delzenne NM (2008) Hepatic steatosis in n-3 fatty acid depleted mice: focus on metabolic alterations related to tissue fatty acid composition. BMC Physiol 8:21. https://doi.org/10.1186/1472-6793-8-21

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiao LP, Zou CH, van der Westhuyzen DR, Shao JH (2008) Adiponectin reduces plasma triglyceride by increasing VLDL triglyceride catabolism. Diabetes 57:1824–1833. https://doi.org/10.2337/db07-0435

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif