The Role of Vitamin C on ATPases Activities in Monosodium Glutamate-Induced Oxidative Stress in Rat Striatum and Cerebellum

Abd El-Hack ME, Alagawany M, Salah AS et al (2018) Effects of dietary supplementation of zinc oxide and zinc methionine on layer performance, egg quality, and blood serum indices. Biol Trace Elem Res 184:456–462. https://doi.org/10.1007/s12011-017-1190-0

Article  PubMed  CAS  Google Scholar 

Abdel Moneim WM, Yassa HA, Makboul RA, Mohamed NA (2018) Monosodium glutamate affects cognitive functions in male albino rats. Egypt J Forensic Sci 8:9. https://doi.org/10.1186/s41935-018-0038-x

Article  Google Scholar 

Adebayo OL, Shallie PD, Adenuga GA (2011) Lipid peroxidation and antioxidant status of the cerebrum, cerebellum and brain stem following dietary monosodium glutamate administration in mice. Asian J Clin Nutr 3:71–77. https://doi.org/10.3923/ajcn.2011.71.77

Article  CAS  Google Scholar 

Adebayo OL, Adenuga GA, Sandhir R (2014) Postnatal protein malnutrition induces neurochemical alterations leading to behavioral deficits in rats: Prevention by selenium or zinc supplementation. Nutr Neurosci 17:268–278. https://doi.org/10.1179/1476830513Y.0000000090

Article  PubMed  CAS  Google Scholar 

Adebayo OL, Sandhir R, Adenuga GA (2015) Protective roles of selenium and zinc against postnatal protein-undernutrition-induced alterations in Ca 2+ -homeostasis leading to cognitive deficits in Wistar rats. Int J Dev Neurosci 43:1–7. https://doi.org/10.1016/j.ijdevneu.2015.03.007

Article  PubMed  CAS  Google Scholar 

Adebayo OL, Ezejiaku BC, Agu VA et al (2019) Vitamin C Protects Against Monosodium Glutamate-induced Alterations in Oxidative Markers and ATPases Activities in Rat’s Brain. Asian J Biochem 15:12–20. https://doi.org/10.3923/ajb.2020.12.20

Article  CAS  Google Scholar 

Ademiluyi AO, Oyeniran OH, Oboh G (2020) Dietary monosodium glutamate altered redox status and dopamine metabolism in lobster cockroach (Nauphoeta cinerea). J Food Biochem 44(11):e13451. https://doi.org/10.1111/jfbc.13451

Article  PubMed  CAS  Google Scholar 

Airaodion AI (2019) Toxicological Effect of Monosodium Glutamate in Seasonings on Human Health. Glob J Nutr Food Sci 1. https://doi.org/10.33552/GJNFS.2019.01.000522

Akataobi U (2020) Effect of monosodium glutamate (MSG) on behavior, body and brain weights of exposed rats. Environ Dis 5:3. https://doi.org/10.4103/ed.ed_31_19

Article  Google Scholar 

Al Kahtani M (2020) Effect of both selenium and biosynthesised nanoselenium particles on cadmium-induced neurotoxicity in albino rats. Hum Exp Toxicol 39:159–172. https://doi.org/10.1177/0960327119880589

Article  PubMed  CAS  Google Scholar 

Amaral AU, Seminotti B, Cecatto C et al (2012) Reduction of Na+, K+-ATPase activity and expression in cerebral cortex of glutaryl-CoA dehydrogenase deficient mice: A possible mechanism for brain injury in glutaric aciduria type I. Mol Genet Metab 107:375–382. https://doi.org/10.1016/j.ymgme.2012.08.016

Article  PubMed  CAS  Google Scholar 

Arundine M, Tymianski M (2004) Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61:657–668. https://doi.org/10.1007/s00018-003-3319-x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ashraf S, Yasoob M, Amin M, Khan M, Bukhari M (2016) Effects of Monosodium Glutamate on Purkinje Cells of the Cerebellum of Adult Albino Rats. Ann Punjab Med Coll 11:1–5. https://doi.org/10.29054/apmc/2017.235

Article  Google Scholar 

Azman KF, Zakaria R (2022) Recent advances on the role of brain-derived neurotrophic factor (BDNF) in neurodegenerative diseases. Int J Mol Sci 23:6827. https://doi.org/10.3390/ijms23126827

Article  PubMed  PubMed Central  CAS  Google Scholar 

Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316. https://doi.org/10.1074/jbc.272.33.20313

Article  PubMed  CAS  Google Scholar 

EL-Meghawry EL-Kenawy A, Osman HEH, Daghestani MH (2013) The effect of vitamin C administration on monosodium glutamate induced liver injury. An experimental study. Exp Toxicol Pathol 65:513–521.https://doi.org/10.1016/j.etp.2012.02.007

Eweka A, Igbigbi P, Ucheya R (2011) Histochemical studies of the effects of monosodium glutamate on the liver of adult wistar rats. Ann Med Health Sci Res 1:21–29

PubMed  PubMed Central  Google Scholar 

Fernstrom JD (2018) Monosodium glutamate in the diet does not raise brain glutamate concentrations or disrupt brain functions. Ann Nutr Metab 73:43–52. https://doi.org/10.1159/000494782

Article  PubMed  CAS  Google Scholar 

Freeman M (2006) Reconsidering the effects of monosodium glutamate: a literature review. J Am Acad Nurse Pract 18:482–486. https://doi.org/10.1111/j.1745-7599.2006.00160.x

Article  PubMed  Google Scholar 

González-Burgos I, Pérez-Vega MI, Beas-Zárate C (2001) Neonatal exposure to monosodium glutamate induces cell death and dendritic hypotrophy in rat prefrontocortical pyramidal neurons. Neurosci Lett 297:69–72. https://doi.org/10.1016/S0304-3940(00)01669-4

Article  PubMed  Google Scholar 

Gürgen SG, Sayın O, Çeti̇n F, et al (2021) the effect of monosodium glutamate on neuronal signaling molecules in the hippocampus and the neuroprotective effects of omega-3 fatty acids. ACS Chem Neurosci 12:3028–3037. https://doi.org/10.1021/acschemneuro.1c00308

Article  PubMed  CAS  Google Scholar 

Hashem HE, El-Din Safwat MD, Algaidi S (2012) The effect of monosodium glutamate on the cerebellar cortex of male albino rats and the protective role of vitamin C (histological and immunohistochemical study). J Mol Histol 43:179–186. https://doi.org/10.1007/s10735-011-9380-0

Article  PubMed  CAS  Google Scholar 

Hassan W, Noreen H, Rehman S et al (2017) Oxidative Stress and Antioxidant Potential of One Hundred Medicinal Plants. Curr Top Med Chem 17:1336–1370. https://doi.org/10.2174/1568026617666170102125648

Article  PubMed  CAS  Google Scholar 

Hernandez-Ojeda M, Ureña-Guerrero ME, Gutierrez-Barajas PE et al (2017) KB-R7943 reduces 4-aminopyridine-induced epileptiform activity in adult rats after neuronal damage induced by neonatal monosodium glutamate treatment. J Biomed Sci 24:27. https://doi.org/10.1186/s12929-017-0335-y

Article  PubMed  PubMed Central  CAS  Google Scholar 

Holton KF, Hargrave SL, Davidson TL (2019) Differential effects of dietary MSG on hippocampal dependent memory are mediated by diet. Front Neurosci 13:. https://doi.org/10.3389/fnins.2019.00968

Husarova V, Ostatnikova D (2013) Monosodium glutamate toxic effects and their implications for human intake: a review. JMED Res 1–12. https://doi.org/10.5171/2013.608765

Hussein U, Hassan N, Elhalwagy M et al (2017) Ginger and propolis exert neuroprotective effects against monosodium glutamate-induced neurotoxicity in rats. Molecules 22:1928. https://doi.org/10.3390/molecules22111928

Article  PubMed  PubMed Central  CAS  Google Scholar 

Komali E, Venkataramaiah C, Rajendra W (2021) Antiepileptic potential of Bacopa monnieri in the rat brain during PTZ-induced epilepsy with reference to cholinergic system and ATPases. J Tradit Complement Med 11:137–143. https://doi.org/10.1016/j.jtcme.2020.02.011

Article  PubMed  CAS  Google Scholar 

Liu J, Chang L, Song Y, et al (2019) The role of NMDA receptors in alzheimer's disease. Front Neurosci 13. https://doi.org/10.3389/fnins.2019.00043

Luck H (1971) Catalase. In Bergmeyer, HU (ed) Methods of Enzymatic Analysis. Academic Press, New York

May JM (2012) Vitamin C transport and its role in the Central Nervous System, pp 85–103

Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

Article  PubMed  CAS  Google Scholar 

Motaghinejad M, Motevalian M, Abdollahi M et al (2017a) Topiramate confers neuroprotection against methylphenidate-induced neurodegeneration in dentate gyrus and CA1 regions of hippocampus via CREB/BDNF pathway in rats. Neurotox Res 31:373–399. https://doi.org/10.1007/s12640-016-9695-4

Article  PubMed  CAS  Google Scholar 

Motaghinejad M, Motevalian M, Fatima S (2017b) Mediatory role of NMDA, AMPA/kainate, GABA A and Alpha 2 receptors in topiramate neuroprotective effects against methylphenidate induced neurotoxicity in rat. Life Sci 179:37–53. https://doi.org/10.1016/j.lfs.2017.01.002

Article  PubMed  CAS  Google Scholar 

Motaghinejad M, Motevalian M, Fatima S et al (2017c) Topiramate via NMDA, AMPA/kainate, GABAA and Alpha2 receptors and by modulation of CREB/BDNF and Akt/GSK3 signaling pathway exerts neuroprotective effects against methylphenidate-induced neurotoxicity in rats. J Neural Transm 124:1369–1387. https://doi.org/10.1007/s00702-017-1771-2

Comments (0)

No login
gif