Abd El-Hack ME, Alagawany M, Salah AS et al (2018) Effects of dietary supplementation of zinc oxide and zinc methionine on layer performance, egg quality, and blood serum indices. Biol Trace Elem Res 184:456–462. https://doi.org/10.1007/s12011-017-1190-0
Article PubMed CAS Google Scholar
Abdel Moneim WM, Yassa HA, Makboul RA, Mohamed NA (2018) Monosodium glutamate affects cognitive functions in male albino rats. Egypt J Forensic Sci 8:9. https://doi.org/10.1186/s41935-018-0038-x
Adebayo OL, Shallie PD, Adenuga GA (2011) Lipid peroxidation and antioxidant status of the cerebrum, cerebellum and brain stem following dietary monosodium glutamate administration in mice. Asian J Clin Nutr 3:71–77. https://doi.org/10.3923/ajcn.2011.71.77
Adebayo OL, Adenuga GA, Sandhir R (2014) Postnatal protein malnutrition induces neurochemical alterations leading to behavioral deficits in rats: Prevention by selenium or zinc supplementation. Nutr Neurosci 17:268–278. https://doi.org/10.1179/1476830513Y.0000000090
Article PubMed CAS Google Scholar
Adebayo OL, Sandhir R, Adenuga GA (2015) Protective roles of selenium and zinc against postnatal protein-undernutrition-induced alterations in Ca 2+ -homeostasis leading to cognitive deficits in Wistar rats. Int J Dev Neurosci 43:1–7. https://doi.org/10.1016/j.ijdevneu.2015.03.007
Article PubMed CAS Google Scholar
Adebayo OL, Ezejiaku BC, Agu VA et al (2019) Vitamin C Protects Against Monosodium Glutamate-induced Alterations in Oxidative Markers and ATPases Activities in Rat’s Brain. Asian J Biochem 15:12–20. https://doi.org/10.3923/ajb.2020.12.20
Ademiluyi AO, Oyeniran OH, Oboh G (2020) Dietary monosodium glutamate altered redox status and dopamine metabolism in lobster cockroach (Nauphoeta cinerea). J Food Biochem 44(11):e13451. https://doi.org/10.1111/jfbc.13451
Article PubMed CAS Google Scholar
Airaodion AI (2019) Toxicological Effect of Monosodium Glutamate in Seasonings on Human Health. Glob J Nutr Food Sci 1. https://doi.org/10.33552/GJNFS.2019.01.000522
Akataobi U (2020) Effect of monosodium glutamate (MSG) on behavior, body and brain weights of exposed rats. Environ Dis 5:3. https://doi.org/10.4103/ed.ed_31_19
Al Kahtani M (2020) Effect of both selenium and biosynthesised nanoselenium particles on cadmium-induced neurotoxicity in albino rats. Hum Exp Toxicol 39:159–172. https://doi.org/10.1177/0960327119880589
Article PubMed CAS Google Scholar
Amaral AU, Seminotti B, Cecatto C et al (2012) Reduction of Na+, K+-ATPase activity and expression in cerebral cortex of glutaryl-CoA dehydrogenase deficient mice: A possible mechanism for brain injury in glutaric aciduria type I. Mol Genet Metab 107:375–382. https://doi.org/10.1016/j.ymgme.2012.08.016
Article PubMed CAS Google Scholar
Arundine M, Tymianski M (2004) Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61:657–668. https://doi.org/10.1007/s00018-003-3319-x
Article PubMed PubMed Central CAS Google Scholar
Ashraf S, Yasoob M, Amin M, Khan M, Bukhari M (2016) Effects of Monosodium Glutamate on Purkinje Cells of the Cerebellum of Adult Albino Rats. Ann Punjab Med Coll 11:1–5. https://doi.org/10.29054/apmc/2017.235
Azman KF, Zakaria R (2022) Recent advances on the role of brain-derived neurotrophic factor (BDNF) in neurodegenerative diseases. Int J Mol Sci 23:6827. https://doi.org/10.3390/ijms23126827
Article PubMed PubMed Central CAS Google Scholar
Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316. https://doi.org/10.1074/jbc.272.33.20313
Article PubMed CAS Google Scholar
EL-Meghawry EL-Kenawy A, Osman HEH, Daghestani MH (2013) The effect of vitamin C administration on monosodium glutamate induced liver injury. An experimental study. Exp Toxicol Pathol 65:513–521.https://doi.org/10.1016/j.etp.2012.02.007
Eweka A, Igbigbi P, Ucheya R (2011) Histochemical studies of the effects of monosodium glutamate on the liver of adult wistar rats. Ann Med Health Sci Res 1:21–29
PubMed PubMed Central Google Scholar
Fernstrom JD (2018) Monosodium glutamate in the diet does not raise brain glutamate concentrations or disrupt brain functions. Ann Nutr Metab 73:43–52. https://doi.org/10.1159/000494782
Article PubMed CAS Google Scholar
Freeman M (2006) Reconsidering the effects of monosodium glutamate: a literature review. J Am Acad Nurse Pract 18:482–486. https://doi.org/10.1111/j.1745-7599.2006.00160.x
González-Burgos I, Pérez-Vega MI, Beas-Zárate C (2001) Neonatal exposure to monosodium glutamate induces cell death and dendritic hypotrophy in rat prefrontocortical pyramidal neurons. Neurosci Lett 297:69–72. https://doi.org/10.1016/S0304-3940(00)01669-4
Gürgen SG, Sayın O, Çeti̇n F, et al (2021) the effect of monosodium glutamate on neuronal signaling molecules in the hippocampus and the neuroprotective effects of omega-3 fatty acids. ACS Chem Neurosci 12:3028–3037. https://doi.org/10.1021/acschemneuro.1c00308
Article PubMed CAS Google Scholar
Hashem HE, El-Din Safwat MD, Algaidi S (2012) The effect of monosodium glutamate on the cerebellar cortex of male albino rats and the protective role of vitamin C (histological and immunohistochemical study). J Mol Histol 43:179–186. https://doi.org/10.1007/s10735-011-9380-0
Article PubMed CAS Google Scholar
Hassan W, Noreen H, Rehman S et al (2017) Oxidative Stress and Antioxidant Potential of One Hundred Medicinal Plants. Curr Top Med Chem 17:1336–1370. https://doi.org/10.2174/1568026617666170102125648
Article PubMed CAS Google Scholar
Hernandez-Ojeda M, Ureña-Guerrero ME, Gutierrez-Barajas PE et al (2017) KB-R7943 reduces 4-aminopyridine-induced epileptiform activity in adult rats after neuronal damage induced by neonatal monosodium glutamate treatment. J Biomed Sci 24:27. https://doi.org/10.1186/s12929-017-0335-y
Article PubMed PubMed Central CAS Google Scholar
Holton KF, Hargrave SL, Davidson TL (2019) Differential effects of dietary MSG on hippocampal dependent memory are mediated by diet. Front Neurosci 13:. https://doi.org/10.3389/fnins.2019.00968
Husarova V, Ostatnikova D (2013) Monosodium glutamate toxic effects and their implications for human intake: a review. JMED Res 1–12. https://doi.org/10.5171/2013.608765
Hussein U, Hassan N, Elhalwagy M et al (2017) Ginger and propolis exert neuroprotective effects against monosodium glutamate-induced neurotoxicity in rats. Molecules 22:1928. https://doi.org/10.3390/molecules22111928
Article PubMed PubMed Central CAS Google Scholar
Komali E, Venkataramaiah C, Rajendra W (2021) Antiepileptic potential of Bacopa monnieri in the rat brain during PTZ-induced epilepsy with reference to cholinergic system and ATPases. J Tradit Complement Med 11:137–143. https://doi.org/10.1016/j.jtcme.2020.02.011
Article PubMed CAS Google Scholar
Liu J, Chang L, Song Y, et al (2019) The role of NMDA receptors in alzheimer's disease. Front Neurosci 13. https://doi.org/10.3389/fnins.2019.00043
Luck H (1971) Catalase. In Bergmeyer, HU (ed) Methods of Enzymatic Analysis. Academic Press, New York
May JM (2012) Vitamin C transport and its role in the Central Nervous System, pp 85–103
Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175
Article PubMed CAS Google Scholar
Motaghinejad M, Motevalian M, Abdollahi M et al (2017a) Topiramate confers neuroprotection against methylphenidate-induced neurodegeneration in dentate gyrus and CA1 regions of hippocampus via CREB/BDNF pathway in rats. Neurotox Res 31:373–399. https://doi.org/10.1007/s12640-016-9695-4
Article PubMed CAS Google Scholar
Motaghinejad M, Motevalian M, Fatima S (2017b) Mediatory role of NMDA, AMPA/kainate, GABA A and Alpha 2 receptors in topiramate neuroprotective effects against methylphenidate induced neurotoxicity in rat. Life Sci 179:37–53. https://doi.org/10.1016/j.lfs.2017.01.002
Article PubMed CAS Google Scholar
Motaghinejad M, Motevalian M, Fatima S et al (2017c) Topiramate via NMDA, AMPA/kainate, GABAA and Alpha2 receptors and by modulation of CREB/BDNF and Akt/GSK3 signaling pathway exerts neuroprotective effects against methylphenidate-induced neurotoxicity in rats. J Neural Transm 124:1369–1387. https://doi.org/10.1007/s00702-017-1771-2
Comments (0)