Amadeo, M. B., Campus, C., & Gori, M. (2019). Impact of years of blindness on neural circuits underlying auditory spatial representation. NeuroImage, 191, 140–149. https://doi.org/10.1016/j.neuroimage.2019.01.073]
Amedi, A., Raz, N., Pianka, P., Malach, R., & Zohary, E. (2003). Early ‘visual’ cortex activation correlates with superior verbal memory performance in the blind. Nature Neuroscience, 6(7), 758–766. https://doi.org/10.1038/nn1072
Article PubMed CAS Google Scholar
Anurova, I., Carlson, S., & Rauschecker, J. P. (2019). Overlapping anatomical networks convey cross-modal suppression in the sighted and coactivation of “visual” and auditory cortex in the blind. Cerebral Cortex, 29(11), 4863–4876. https://doi.org/10.1093/cercor/bhz021
Article PubMed PubMed Central Google Scholar
Arcos, K., Harhen, N., Loiotile, R., & Bedny, M. (2022). Superior verbal but not nonverbal memory in congenital blindness. Experimental Brain Research, 240(3), 897–908. https://doi.org/10.1007/s00221-021-06304-4
Article PubMed PubMed Central Google Scholar
Arcos, K., Jaeggi, S. M., & Grossman, E. D. (2022). Perks of blindness: Enhanced verbal memory span in blind over sighted adults. Brain Research, 1789, 147943.
Article PubMed CAS Google Scholar
Baddeley, A. (2010). Working memory. Current Biology, 20(4), R136–R140. https://doi.org/10.1016/j.cub.2009.12.014
Article PubMed CAS Google Scholar
Balduzzi, S., Rücker, G., & Schwarzer, G. (2019). How to perform a meta-analysis with R: A practical tutorial. Evidence-Based Mental Health, 22, 153–160. https://doi.org/10.1136/ebmental-2019-300117
Article PubMed PubMed Central Google Scholar
Bedny, M. (2017). Evidence from blindness for a cognitively pluripotent cortex. Trends in Cognitive Sciences, 21(9), 637–648.
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2010). A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods, 1(2), 97–111. https://doi.org/10.1002/JRSM.12
Bottini, R., Mattioni, S., & Collignon, O. (2016). Early blindness alters the spatial organization of verbal working memory. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 83, 271–279. https://doi.org/10.1016/j.cortex.2016.08.007
Castronovo, J., & Delvenne, J.-F. (2013). Superior numerical abilities following early visual deprivation. Cortex, 49(5), 1435–1440. https://doi.org/10.1016/j.cortex.2012.12.018
Cattaneo, Z., Vecchi, T., Cornoldi, C., Mammarella, I., Bonino, D., Ricciardi, E., & Pietrini, P. (2008). Imagery andspatial processes in blindness and visual impairment. Neuroscience and Biobehavioral Reviews, 32(8), 1346–1360. https://doi.org/10.1016/j.neubiorev.2008.05.002
Cohen, J. (2013). Statistical power analysis for the behavioral sciences; Informa UK Limited: Mahwah. NJ.
Cohen, L. G., Weeks, R. A., Sadato, N., Celnik, P., Ishii, K., & Hallett, M. (1999). Period of susceptibility for cross-modal plasticity in the blind. Annals of Neurology, 45(4), 451–460.
Article PubMed CAS Google Scholar
Cornoldi, C., & Vecchi, T. (2003). Visuo-spatial working memory and individual differences (1st ed.). Psychology Press. https://doi.org/10.4324/9780203641583
Corsi, P. M. (1972). Human memory and the medial temporal region of the brain. McGill University. https://escholarship.mcgill.ca/concern/theses/05741s554
Cowan, N. (2008). What are the differences between long-term, short-term, and working memory? Progress in Brain Research, 169, 323–338. https://doi.org/10.1016/S0079-6123(07)00020-9
Article PubMed PubMed Central Google Scholar
Crollen, V., NoëL, M. P., Seron, X., Mahau, P., Lepore, F., & Collignon, O. (2014). Visual experience influences the interactions between fingers and numbers. Cognition, 133(1), 91–96. https://doi.org/10.1016/j.cognition.2014.06.002
DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7(3), 177–188. https://doi.org/10.1016/0197-2456(86)90046-2
Article PubMed CAS Google Scholar
D’Esposito, M. (2007). From cognitive to neural models of working memory. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 362(1481), 761–772. https://doi.org/10.1098/rstb.2007.2086
Article PubMed PubMed Central Google Scholar
Dietrich, S., Hertrich, I., & Ackermann, H. (2013a). Training of ultra-fast speech comprehension induces functionalreorganization of the central-visual system in late-blind humans. Frontiers in Human Neuroscience, 7, 1–15. https://doi.org/10.3389/fnhum.2013.00701
Dietrich, S., Hertrich, I., & Ackermann, H. (2013b). Ultra-fast speech comprehension in blind subjects engages primary visual cortex, fusiform gyrus, and pulvinar - A functional magnetic resonance imaging (fMRI) study. BMC Neuroscience, 14(1), 74. https://doi.org/10.1186/1471-2202-14-74
Article PubMed PubMed Central Google Scholar
Donolato, E., Giofrè, D., & Mammarella, I. C. (2017). Differences in verbal and visuospatial forward and backward order recall: A review of the literature. Frontiers in Psychology, 8, 663. https://doi.org/10.3389/fpsyg.2017.00663
Article PubMed PubMed Central Google Scholar
Dormal, V., Crollen, V., Baumans, C., Lepore, F., & Collignon, O. (2016). Early but not late blindness leads to enhanced arithmetic and working memory abilities. Cortex, 83, 212–221. https://doi.org/10.1016/j.cortex.2016.07.016
Fortin, M., Voss, P., Lord, C., Lassonde, M., Pruessner, J., Saint-Amour, D., Rainville, C., & Lepore, F. (2008). Wayfinding in the blind: Larger hippocampal volume and supranormal spatial navigation. Brain: A Journal of Neurology, 131(Pt 11), 2995–3005. https://doi.org/10.1093/brain/awn250
Hedges, L. V. (1981). Distribution theory for Glass’s estimator of effect size and related estimators. Journal of Educational Statistics, 6(2), 107–128. https://doi.org/10.3102/10769986006002107
Hill-Briggs, F., Dial, J. G., Morere, D. A., & Joyce, A. (2007). Neuropsychological assessment of persons with physical disability, visual impairment or blindness, and hearing impairment or deafness. Archives of Clinical Neuropsychology: The Official Journal of the National Academy of Neuropsychologists, 22(3), 389–404. https://doi.org/10.1016/j.acn.2007.01.013
Ivanova, M. V., Dragoy, O., Kuptsova, S. V., Yu Akinina, S., Petrushevskii, A. G., Fedina, O. N., Turken, A., Shklovsky, V. M., & Dronkers, N. F. (2018). Neural mechanisms of two different verbal working memory tasks: A VLSM study. Neuropsychologia, 115, 25–41. https://doi.org/10.1016/j.neuropsychologia.2018.03.003
Article PubMed PubMed Central CAS Google Scholar
Jafari, Z., & Malayeri, S. (2014). Effects of congenital blindness on the subcortical representation of speech cues. Neuroscience, 258, 401–409. https://doi.org/10.1016/j.neuroscience.2013.11.027
Article PubMed CAS Google Scholar
Jarrold, C., & Towse, J. N. (2006). Individual differences in working memory. Neuroscience, 139(1), 39–50. https://doi.org/10.1016/j.neuroscience.2005.07.002
Article PubMed CAS Google Scholar
Kane, M. J., Conway, A. R. A., Miura, T. K., & Colflesh, G. J. H. (2007). Working memory, attention control, and the n-back task: A question of construct validity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(3), 615–622. https://doi.org/10.1037/0278-7393.33.3.615
Kanjlia, S., Feigenson, L., & Bedny, M. (2018). Numerical cognition is resilient to dramatic changes in early sensory experience. Cognition, 179(April 2017), 111–120. https://doi.org/10.1016/j.cognition.2018.06.004
Kattner, F., & Ellermeier, W. (2014). Irrelevant speech does not interfere with serial recall in early blind listeners. The
Comments (0)