Associations of ocular anterior segment structures with sex and age: the Yamagata study (Funagata)

van Zyl T, Yan W, McAdams AM, Monavarfeshani A, Hageman GS, Sanes JR. Cell atlas of the human ocular anterior segment: tissue-specific and shared cell types. Proc Natl Acad Sci U S A. 2022;119:e2200914119.

Article  PubMed  PubMed Central  Google Scholar 

Ang M, Baskaran M, Werkmeister RM, Chua J, Schmidl D, Aranha Dos Santos V, et al. Anterior segment optical coherence tomography. Prog Retin Eye Res. 2018;66:132–56.

Article  PubMed  Google Scholar 

Garcia Marin YF, Alonso-Caneiro D, Vincent SJ, Collins MJ. Anterior segment optical coherence tomography (AS-OCT) image analysis methods and applications: a systematic review. Comput Biol Med. 2022;146:105471.

Article  PubMed  Google Scholar 

Ambrósio R Jr, Belin MW. Imaging of the cornea: Topography vs tomography. J Refract Surg. 2010;26:847–9.

Article  PubMed  Google Scholar 

Szalai E, Berta A, Hassan Z, Módis L Jr. Reliability and repeatability of swept-source fourier-domain optical coherence tomography and Scheimpflug imaging in keratoconus. J Cataract Refract Surg. 2012;38:485–94.

Article  PubMed  Google Scholar 

Niwas SI, Lin W, Bai X, Kwoh CK, Jay Kuo CC, Sng CC, et al. Automated anterior segment OCT image analysis for Angle Closure Glaucoma mechanisms classification. Comput Methods Programs Biomed. 2016;130:65–75.

Article  PubMed  Google Scholar 

Fu H, Xu Y, Lin S, Zhang X, Wong DWK, Liu J, et al. Segmentation and quantification for angle-closure glaucoma assessment in anterior segment OCT. IEEE Trans Med Imaging. 2017;36:1930–8.

Article  PubMed  Google Scholar 

Goto T, Klyce SD, Zheng X, Maeda N, Kuroda T, Ide C. Gender- and age-related differences in corneal topography. Cornea. 2001;20:270–6.

Article  CAS  PubMed  Google Scholar 

Hayashi K, Sato T, Sasaki H, Hirata A, Yoshimura K. Sex-related differences in corneal astigmatism and shape with age. J Cataract Refract Surg. 2018;44:1130–9.

Article  PubMed  Google Scholar 

Moghadas Sharif N, Yazdani N, Shahkarami L, Ostadi Moghaddam H, Ehsaei A. Analysis of age, gender, and refractive error-related changes of the anterior corneal surface parameters using oculus keratograph topography. J Curr Ophthalmol. 2020;32:263–7.

Article  PubMed  PubMed Central  Google Scholar 

Namba H, Sugano A, Nishi K, Murakami T, Nishitsuka K, Konta T, et al. Age-related variations in corneal geometry and their association with astigmatism: the Yamagata Study (Funagata). Medicine. 2018;97:e12894.

Article  PubMed  PubMed Central  Google Scholar 

Almorín-Fernández-Vigo I, Sánchez-Guillén I, Fernández-Vigo JI, Macarro-Merino A, Kudsieh B, Fernández-Vigo C, et al. Normative Pentacam anterior and posterior corneal elevation measurements: effects of age, sex, axial length and white-to-white. Int Ophthalmol. 2019;39:1955–63.

Article  PubMed  Google Scholar 

Hashmani N, Hashmani S, Murad A, Asghar N, Islam M. Effect of demographic variables on the regional corneal pachymetry. Asia Pac J Ophthalmol (Phila). 2019;8:324–9.

Article  PubMed  Google Scholar 

Koch DD, Ali SF, Weikert MP, Shirayama M, Jenkins R, Wang L. Contribution of posterior corneal astigmatism to total corneal astigmatism. J Cataract Refract Surg. 2012;38:2080–7.

Article  PubMed  Google Scholar 

Xu L, Li JJ, Xia CR, Wang YX, Jonas JB. Anterior chamber depth correlated with anthropomorphic measurements: the Beijing Eye Study. Eye (Lond). 2009;23:632–4.

Article  CAS  PubMed  Google Scholar 

Schuster AK, Pfeiffer N, Nickels S, Schulz A, Höhn R, Wild PS, et al. Distribution of anterior chamber angle width and correlation with age, refraction, and anterior chamber depth-the Gutenberg health study. Invest Ophthalmol Vis Sci. 2016;57:3740–6.

Article  CAS  PubMed  Google Scholar 

Atchison DA, Markwell EL, Kasthurirangan S, Pope JM, Smith G, Swann PG. Age-related changes in optical and biometric characteristics of emmetropic eyes. J Vis. 2008;8(291–208):291–20.

Google Scholar 

Sun JH, Sung KR, Yun SC, Cheon MH, Tchah HW, Kim MJ, et al. Factors associated with anterior chamber narrowing with age: an optical coherence tomography study. Invest Ophthalmol Vis Sci. 2012;53:2607–10.

Article  PubMed  Google Scholar 

Maruyama Y, Mori K, Ikeda Y, Ueno M, Kinoshita S. Morphological analysis of age-related iridocorneal angle changes in normal and glaucomatous cases using anterior segment optical coherence tomography. Clin Ophthalmol. 2014;8:113–8.

PubMed  Google Scholar 

Eysteinsson T, Jonasson F, Arnarsson A, Sasaki H, Sasaki K. Relationships between ocular dimensions and adult stature among participants in the Reykjavik Eye Study. Acta Ophthalmol Scand. 2005;83:734–8.

Article  PubMed  Google Scholar 

Richdale K, Bullimore MA, Zadnik K. Lens thickness with age and accommodation by optical coherence tomography. Ophthalmic Physiol Opt. 2008;28:441–7.

Article  PubMed  PubMed Central  Google Scholar 

Li Z, Qu W, Huang J, Meng Z, Li X, Zou R, et al. Effect of age and cycloplegia on the morphology of the human crystalline lens: swept-source OCT study. J Cataract Refract Surg. 2022;48:8–15.

Article  PubMed  Google Scholar 

Dembski M, Nowińska A, Ulfik-Dembska K, Wylęgała E. Swept source optical coherence tomography analysis of the selected Eye’s anterior segment parameters. J Clin Med. 2021;10:1094.

Article  PubMed  PubMed Central  Google Scholar 

Suzuki S, Suzuki Y, Iwase A, Araie M. Corneal thickness in an ophthalmologically normal Japanese population. Ophthalmology. 2005;112:1327–36.

Article  PubMed  Google Scholar 

Shimmyo M, Ross AJ, Moy A, Mostafavi R. Intraocular pressure, Goldmann applanation tension, corneal thickness, and corneal curvature in caucasians, asians, hispanics, and African americans. Am J Ophthalmol. 2003;136:603–13.

Article  PubMed  Google Scholar 

Altinok A, Sen E, Yazici A, Aksakal FN, Oncul H, Koklu G. Factors influencing central corneal thickness in a Turkish population. Curr Eye Res. 2007;32:413–9.

Article  CAS  PubMed  Google Scholar 

Cosar CB, Sener AB. Orbscan corneal topography system in evaluating the anterior structures of the human eye. Cornea. 2003;22:118–21.

Article  PubMed  Google Scholar 

Tominaga M, Eguchi H, Manaka H, Igarashi K, Kato T, Sekikawa A. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata diabetes study. Diabetes Care. 1999;22:920–4.

Article  CAS  PubMed  Google Scholar 

Kawasaki R, Wang JJ, Rochtchina E, Taylor B, Wong TY, Tominaga M, et al. Cardiovascular risk factors and retinal microvascular signs in an adult Japanese population: the Funagata Study. Ophthalmology. 2006;113:1378–84.

Article  PubMed  Google Scholar 

Namba H, Kawasaki R, Narumi M, Sugano A, Homma K, Nishi K, et al. Ocular higher-order wavefront aberrations in the Japanese adult population: the Yamagata Study (Funagata). Invest Ophthalmol Vis Sci. 2014;56:90–7.

Article  PubMed  Google Scholar 

Namba H, Kawasaki R, Sugano A, Nishi K, Murakami T, Nishitsuka K, et al. Cross-sectional and longitudinal investigation of the power vector in astigmatism: the Yamagata Study (Funagata). Cornea. 2018;37:53–8.

Article  PubMed  Google Scholar 

Namba H, Sugano A, Murakami T, Utsunomiya H, Sato H, Nishitsuka K, et al. Ten-year longitudinal investigation of astigmatism: the Yamagata Study (Funagata). PLoS ONE. 2022;17:e0261324.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wickremasinghe S, Foster PJ, Uranchimeg D, Lee PS, Devereux JG, Alsbirk PH, et al. Ocular biometry and refraction in Mongolian adults. Invest Ophthalmol Vis Sci. 2004;45:776–83.

Article  PubMed  Google Scholar 

Klein BE, Klein R, Moss SE. Correlates of lens thickness: the Beaver Dam Eye Study. Invest Ophthalmol Vis Sci. 1998;39:1507–10.

CAS  PubMed 

Comments (0)

No login
gif