American Psychiatric Association. DSM-V diagnostic and statistical manual of mental disorders. 5th ed. Washington: American Psychiatric Publishing Inc.; 2013.
Landa RJ, Holman KC, Garrett-Mayer E. Social and communication development in toddlers with early and later diagnosis of autism spectrum disorders. Arch Gen Psychiatry. 2007;64(7):853–64. https://doi.org/10.1001/archpsyc.64.7.853.
Hodges H, Fealko C, Soares N. Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation. Transl Pediatr. 2020;9(1):55.
Ahmed IA, Senan EM, Rassem TH, Ali MA, Shatnawi HSA, Alwazer SM, Alshahrani M. Eye tracking-based diagnosis and early detection of autism spectrum disorder using machine learning and deep learning techniques. Electronics. 2022;11(4):530. https://doi.org/10.3390/electronics11040530.
Okoye C, Obialo-Ibeawuchi CM, Obajeun OA, Sarwar S, Tawfik C, Waleed MS, Wasim AU, Mohamoud I, Afolayan AY, Mbaezue RN. Early diagnosis of autism spectrum disorder: a review and analysis of the risks and benefits. Cureus. 2023;15(8): e43226. https://doi.org/10.7759/cureus.43226.
Zwaigenbaum L, Bauman ML, Stone WL, Yirmiya N, Estes A, Hansen RL, Wetherby A. Early identification of autism spectrum disorder: recommendations for practice and research. Pediatrics. 2015;136(1):10–40. https://doi.org/10.1542/peds.2014-3667C.
Mastergeorge AM, Kahathuduwa C, Blume J. Eye-tracking in infants and young children at risk for autism spectrum disorder: a systematic review of visual stimuli in experimental paradigms. J Autism Dev Disord. 2021;51:2578–99. https://doi.org/10.1007/s10803-020-04731-w.
Guillon Q, Hadjikhani N, Baduel S, Rogé B. Visual social attention in autism spectrum disorder: insights from eye tracking studies. Neurosci Biobehav Rev. 2014;42:279–97. https://doi.org/10.1016/j.neubiorev.2014.03.013.
Chevallier C, Parish-Morris J, McVey A, Rump KM, Sasson NJ, Herrington JD, Schultz RT. Measuring social attention and motivation in autism spectrum disorder using eye-tracking: stimulus type matters. Autism Res. 2015;8(5):620–8. https://doi.org/10.1002/aur.1479.
Klaib AF, Alsrehin NO, Melhem WY, Bashtawi HO, Magableh AA. Eye tracking algorithms, techniques, tools, and applications with an emphasis on machine learning and Internet of Things technologies. Expert Syst Appl. 2021;166: 114037. https://doi.org/10.1016/j.eswa.2020.114037.
Wei Q, Cao H, Shi Y, Xu X, Li T. Machine learning based on eye-tracking data to identify Autism Spectrum Disorder: a systematic review and meta-analysis. J Biomed Inform. 2023;137: 104254. https://doi.org/10.1016/j.jbi.2022.104254.
Bayley N. Bayley Scales of infant and toddler development. 3rd ed. Washington: APA PsycTests; 2005.
Albers CA, Grieve AJ. Review of Bayley scales of infant and toddler development-third edition. J Psychoeduc Assess. 2007;25(2):180–90. https://doi.org/10.1177/0734282906297199.
Del Rosario C, Slevin M, Molloy EJ, Quigley J, Nixon E. How to use the Bayley scales of infant and toddler development. Arch Disease Childhood-Educ Pract. 2021;106(2):108–12. https://doi.org/10.1136/archdischild-2020-319063.
Anderson PJ, Burnett A. Assessing developmental delay in early childhood concerns with the Bayley-III scales. Clin Neuropsychol. 2017;31(2):371–81. https://doi.org/10.1080/13854046.2016.1216518.
Ozdemir S, Akin-Bulbul I, Kok I, Ozdemir S. Development of a visual attention based decision support system for autism spectrum disorder screening. Int J Psychophysiol. 2022;173:69–81. https://doi.org/10.1016/j.ijpsycho.2022.01.004.
Ozturk D, Aydogan S, Kok I, Akin-Bulbul I, Ozdemir S, Ozdemir S, Akay D. Linguistic comparison of children with and without ASD through eye-tracking data. In: Proceedings of the 2023 9th international conference on computer technology applications. 2023. pp. 241–6. https://doi.org/10.1145/3605423.3605457
van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84:523–38. https://doi.org/10.1007/s11192-009-0146-3.
VosViewer. Centre for science and technology studies. The Netherlands: Leiden University; 2023
Rahman S, Rahman S, Shahid O, Abdullah MT, Sourov JA. Classifying eye-tracking data using saliency maps. In: 25th international conference on pattern recognition (ICPR). 2021. pp. 9288–95. https://doi.org/10.48550/arXiv.2010.12913
Webb SJ, Shic F, Murias M, Sugar CA, Naples AJ, Barney E, Borland H, Hellemann G, Johnson S, Kim M, Levin AR, Vito MSD, Santhosh M, Senturk D, Dziura J, Bernier RA, Chawarska K, Dawson G, Faja S, Jeste S. Autism biomarkers consortium for clinical trials. Biomarker acquisition and quality control for multi-site studies: the autism biomarkers consortium for clinical trials. Front Integr Neurosci. 2020;13:71.
Vettori S, Dzhelyova M, Van der Donck S, Jacques C, Van Wesemael T, Steyaert J, Rossion B, Boets B. Combined frequency-tagging EEG and eye tracking reveal reduced social bias in boys with autism spectrum disorder. Cortex. 2020;125:135–48. https://doi.org/10.1016/j.cortex.2019.12.013.
Vettori S, Van der Donck S, Nys J, Moors P, Van Wesemael T, Steyaert J, Rossion B, Boets B. Combined frequency-tagging EEG and eye-tracking measures provide no support for the “excess mouth/diminished eye attention” hypothesis in autism. Mol Autism. 2020;11(1):1–22. https://doi.org/10.1186/s13229-020-00396-5.
Zhang S, Chen D, Tang Y, Zhang L. Children ASD evaluation through joint analysis of EEG and eye-tracking recordings with graph convolution network. Front Hum Neurosci. 2021;15: 651349. https://doi.org/10.3389/fnhum.2021.651349.
Xu W, Chen J. Analysis of EEG signals in children with autism spectrum disorder under positive and negative emotional stimuli. Chin Sci Bull. 2020;65(21):2245–55. https://doi.org/10.1360/TB-2019-0719.
Tan G, Xu K, Liu J, Liu H. A trend on autism spectrum disorder research: eye tracking-EEG correlative analytics. IEEE Trans Cognit Dev Syst. 2021;14(3):1232–44. https://doi.org/10.1109/TCDS.2021.3102646.
Liao M, Duan H, Wang G. Application of machine learning techniques to detect the children with autism spectrum disorder. J Healthc Eng. 2022;2022:10. https://doi.org/10.1155/2022/9340027.
Haputhanthri D, Brihadiswaran G, Gunathilaka S, Meedeniya D, Jayawardena Y, Jayarathna S, Jaime M. An EEG based channel optimized classification approach for autism spectrum disorder. In: 2019 Moratuwa engineering research conference (MERCon). 2019. pp. 123–8. https://doi.org/10.1109/MERCon.2019.8818814
Chen T, Froehlich T, Li T, Lu L. Big data approaches to develop a comprehensive and accurate tool aimed at improving autism spectrum disorder diagnosis and subtype stratification. Libr Hi Tech. 2020;38(4):819–33. https://doi.org/10.1108/LHT-08-2019-0175.
Guo Z, Kim K, Bhat A, Barmaki R. An automated mutual gaze detection framework for social behavior assessment in therapy for children with autism. In: Proceedings of the 2021 international conference on multimodal interaction. 2021. pp. 444–52. https://doi.org/10.1145/3462244.3479882
Dhanawansa V, Samarasinghe P, Gardiner B, Yogarajah P, Karunasena A. The automated temporal analysis of gaze following in a visual tracking task. In: International conference on image analysis and processing. 2022. pp. 324–36. Cham: Springer
Banire B, Al Thani D, Qaraqe M, Mansoor B. Face-based attention recognition model for children with autism spectrum disorder. J Healthc Inform Res. 2021;5:420–45. https://doi.org/10.1007/s41666-021-00101-y.
Surendiran R, Thangamani M, Narmatha C, Iswarya M. Effective autism spectrum disorder prediction to improve the clinical traits using machine learning techniques. Int J Eng Trends Technol. 2022;70(4):343–59.
Monarca I, Cibrian FL, Chavez E, Tentori M. Using a small dataset to classify strength-interactions with an elastic display: a case study for the screening of autism spectrum disorder. Int J Mach Learn Cybern. 2023;14(1):151–69. https://doi.org/10.1007/s13042-022-01554-2.
Ghazal TM, Munir S, Abbas S, Athar A, Alrababah H, Khan MA. Early detection of autism in children using transfer learning. Intell Autom Soft Comput. 2023;36(1):11–22.
Lakhan A, Mohammed MA, Abdulkareem KH, Hamouda H, Alyahya S. Autism spectrum disorder detection framework for children based on federated learning integrated CNN-LSTM. Comput Biol Med. 2023;166: 107539. https://doi.org/10.1016/j.compbiomed.2023.107539.
Thabtah F, Spencer R, Abdelhamid N, Kamalov F, Wentzel C, Ye Y, Dayara T. Autism screening: an unsupervised machine learning approach. Health Inf Sci Syst. 2022;10(1):26. https://doi.org/10.1007/s13755-022-00191-x.
Tsampi K, Panagiotakis S, Hatzakis E, Lakiotakis E, Atsali G, Vassilakis K, Malamos A. Extending the Sana mobile healthcare platform with features providing ECG analysis. Mobile big data: a roadmap from models to technologies. Berlin: Springer; 2018. p. 289–321.
Shamsollahi M, Badiee A, Ghazanfari M. Using combined descriptive and predictive methods of data mining for coronary artery disease prediction: a case study approach. J AI Data Min. 2019;7(1):47–58.
Grebovic M, Filipovic L, Katnic I, Vukotic M, Popovic T. Overcoming limitations of statistical methods with artificial neural networks. In: 2022 International Arab Conference on Information Technology (ACIT), Abu Dhabi, United Arab Emirates, 2022, 1–6; 2022. https://doi.org/10.1109/ACIT57182.2022.9994218
Yager RR. A new approach to the summarization of data. Inf Sci. 1982;28(1):69–86. https://doi.org/10.1016/0020-0255(82)90033-0.
Article MathSciNet Google Scholar
Yogish D, Manjunath TN, Hegadi RS. Review on natural language processing trends and techniques using NLTK. In: Recent trends in image processing and pattern recognition RTIP2R 2018. Communications in computer and information science, vol 1037. Springer, Singapore (2019)
Yager RR, Ford KM, Cañas AJ. An approach to the linguistic summarization of data. In: Bouchon-Meunier B, Yager RR, Zadeh LA, editors. Uncertainty in knowledge bases. IPMU 1990. Lecture Notes in Computer Science, vol 521. Springer, Berlin; 1991. https://doi.org/10.1007/BFb0028132
Andhale N, Bewoor LA. An overview of text summarization techniques. In: International conference on computing communication control and automation (ICCUBEA). 2016. pp. 1–7. IEEE. https://doi.org/10.1109/ICCUBEA.2016.7860024
Castillo-Ortega R, Marín N, Sánchez D. Time series comparison using linguistic fuzzy techniques. In: International conference on information processing and management of uncertainty in knowledge-based systems. Berlin: Springer; 2010. p. 330–9.
Altintop T, Yager RR, Akay D, Boran FE, Ünal M. Fuzzy linguistic summarization with genetic algorithm: an application with operational and financial healthcare data. Int J Uncertain Fuzziness Knowl Based Syst. 2017;25(04):599–620. https://doi.org/10.1142/S021848851750026X.
Comments (0)