Comparison of state-of-the-art biopsy systems for ultrasound-guided breast biopsy using a chicken breast phantom

D'Orsi CJ, Sickles EA, Mendelson EB, et al. ACR BI-RADS Atlas, Breast Imaging Reporting and Data System, 5th ed. Reston, VA: American College of Radiology. 2013

Wang M, He X, Chang Y, et al. A sensitivity and specificity comparison of fine needle aspiration cytology and core needle biopsy in evaluation of suspicious breast lesions: a systematic review and meta-analysis. Breast. 2017;31:157–66.

Article  PubMed  Google Scholar 

Yashima Y, Fujioka T, Kubota K, et al. Comparison of the clinical and pathological characteristics of ultrasound-guided biopsy for breast masses and non-mass lesions between 16-gauge spring-loaded core needle biopsy and 12-gauge spring-loaded vacuum-assisted biopsy. J Med Ultrason. 2023;50:205–12.

Article  Google Scholar 

Grady I, Vasquez T, Tawfik S, et al. Ultrasound-guided core-needle versus vacuum-assisted breast biopsy: a cost analysis based on the American society of breast surgeons’ mastery of breast surgery registry. Ann Surg Oncol. 2017;24:676–82.

Article  PubMed  Google Scholar 

Berg WA, Krebs TL, Campassi C, et al. Evaluation of 14- and 11-gauge directional, vacuum-assisted biopsy probes and 14-gauge biopsy guns in a breast parenchymal model. Radiology. 1997;205:203–8.

Article  CAS  PubMed  Google Scholar 

Poellinger A, Bick U, Freund T, et al. Evaluation of 11-gauge and 9-gauge vacuum-assisted breast biopsy systems in a breast parenchymal model. Acad Radiol. 2007;14:677–84.

Article  PubMed  Google Scholar 

Choridah L, Kurniadi D, Ain K, et al. Comparison of electrical impedance tomography and ultrasonography for determination of solid and cystic lesion resembling breast tumor embedded in chicken phantom. J Electr Bioimpedance. 2021;12:63–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seow JH, Phillips M, Taylor D. Sonographic visibility of breast tissue markers: a tissue phantom comparison study. Australas J Ultrasound Med. 2012;15:149–57.

Article  PubMed  PubMed Central  Google Scholar 

Zhao X, Ersoy E, Ng DL. Comparison of low-cost phantoms for ultrasound-guided fine-needle aspiration biopsy training. J Am Soc Cytopathol. 2023;12:275–83.

Article  PubMed  PubMed Central  Google Scholar 

Yamaguchi K, Nakazono T, Egashira R, et al. Maximum slope of ultrafast dynamic contrast-enhanced MRI of the breast: comparisons with prognostic factors of breast cancer. Jpn J Radiol. 2021;39:246–53.

Article  PubMed  Google Scholar 

Honda M, Kataoka M, Kawaguchi K, et al. Subcategory classifications of breast imaging and data system (BI-RADS) category 4 lesions on MRI. Jpn J Radiol. 2021;39:56–65.

Article  PubMed  Google Scholar 

Li X, Chai W, Sun K, et al. The value of whole-tumor histogram and texture analysis based on apparent diffusion coefficient (ADC) maps for the discrimination of breast fibroepithelial lesions: corresponds to clinical management decisions. Jpn J Radiol. 2022;40:1263–71.

Article  PubMed  Google Scholar 

Nara M, Fujioka T, et al. Prediction of breast cancer risk by automated volumetric breast density measurement. Jpn J Radiol. 2023;41:54–62.

Article  PubMed  Google Scholar 

Satoh Y, Imai M, Ikegawa C, Onishi H, et al. Image quality evaluation of real low-dose breast PET. Jpn J Radiol. 2022;40(11):1186–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Terada K, Kawashima H, Yoneda N, et al. Predicting axillary lymph node metastasis in breast cancer using the similarity of quantitative dual-energy CT parameters between the primary lesion and axillary lymph node. Jpn J Radiol. 2022;40:1272–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ozaki J, Fujioka T, Yamaga E, et al. Deep learning method with a convolutional neural network for image classification of normal and metastatic axillary lymph nodes on breast ultrasonography. Jpn J Radiol. 2022;40:814–22.

Article  PubMed  Google Scholar 

Uematsu T, Nakashima K, Harada TL, et al. Comparisons between artificial intelligence computer-aided detection synthesized mammograms and digital mammograms when used alone and in combination with tomosynthesis images in a virtual screening setting. Jpn J Radiol. 2023;41:63–70.

Article  PubMed  Google Scholar 

Ueda D, Yamamoto A, Takashima T, et al. Visualizing “featureless” regions on mammograms classified as invasive ductal carcinomas by a deep learning algorithm: the promise of AI support in radiology. Jpn J Radiol. 2021;39:333–40.

Article  PubMed  Google Scholar 

Ishihara M, Shiiba M, Maruno H, et al. Detection of intracranial aneurysms using deep learning-based CAD system: usefulness of the scores of CNN’s final layer for distinguishing between aneurysm and infundibular dilatation. Jpn J Radiol. 2023;41(2):131–41.

Article  PubMed  Google Scholar 

Preibsch H, Baur A, Wietek BM, et al. Vacuum-assisted breast biopsy with 7-gauge, 8-gauge, 9-gauge, 10-gauge, and 11-gauge needles: how many specimens are necessary? Acta Radiol. 2015;56:1078–84.

Article  PubMed  Google Scholar 

Nakano S, Imawari Y, Mibu A, et al. Differentiating vacuum-assisted breast biopsy from core needle biopsy: is it necessary? Br J Radiol. 2018;91:20180250.

Article  PubMed  PubMed Central  Google Scholar 

Uematsu T. Non-mass lesions on breast ultrasound: why does not the ACR BI-RADS breast ultrasound lexicon add the terminology? J Med Ultrason. 2023;50:341–6.

Article  Google Scholar 

Ito T, Ueno E, Endo T, et al. The Japan society of ultrasonics in medicine guidelines on non-mass abnormalities of the breast. J Med Ultrason. 2023;50:331–9.

Article  Google Scholar 

Kubota K, Mori M, Fujioka T, et al. Magnetic resonance imaging diagnosis of non-mass enhancement of the breast. J Med Ultrason. 2023;50:361–6.

Article  Google Scholar 

Goto M, Sakai K, Toyama Y, et al. Use of a deep learning algorithm for non-mass enhancement on breast MRI: comparison with radiologists’ interpretations at various levels. Jpn J Radiol. 2023;41:1094–103.

Article  PubMed  PubMed Central  Google Scholar 

Kubota K, Fujioka T, Tateishi U, et al. Investigation of imaging features in contrast-enhanced magnetic resonance imaging of benign and malignant breast lesions. Jpn J Radiol. 2024. https://doi.org/10.1007/s11604-024-01551-1.

Article  PubMed  PubMed Central  Google Scholar 

Cho N, Moon WK, Cha JH, et al. Sonographically guided core biopsy of the breast: comparison of 14-gauge automated gun and 11-gauge directional vacuum-assisted biopsy methods. Korean J Radiol. 2005;6:102–9.

Article  PubMed  PubMed Central  Google Scholar 

Suh YJ, Kim MJ, Kim EK, et al. Comparison of the underestimation rate in cases with ductal carcinoma in situ at ultrasound-guided core biopsy: 14-gauge automated core-needle biopsy vs 8- or 11-gauge vacuum-assisted biopsy. Br J Radiol. 2012;85:e349–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif