Clinical application of photoacoustic imaging for cervical precursor lesion detection

Ferlay J, Soerjomataram I, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

Article  CAS  PubMed  Google Scholar 

Cox JT. More questions about the accuracy of colposcopy: what does this mean for cervical cancer prevention? Obstet Gynecol. 2008;111:1266–7.

Article  PubMed  Google Scholar 

Massad LS, Jeronimo J, Schiffman M, et al. Interobserver agreement in the assessment of components of colposcopic grading. Obstet Gynecol. 2008;111:1279–84.

Article  PubMed  Google Scholar 

Thekkek N, Richards-Kortum R. Optical imaging for cervical cancer detection: solutions for a continuing global problem. Nat Rev Cancer. 2008;8:725.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hermens M, Ebisch RM, Galaal K, et al. Alternative colposcopy techniques: a systematic review and meta-analysis. Obstet Gynecol. 2016;128:795–803.

Article  PubMed  Google Scholar 

Dellas A, Moch H, Schultheiss E, et al. Angiogenesis in cervical neoplasia: microvessel quantitation in precancerous lesions and invasive carcinomas with clinicopathological correlations. Gynecol Oncol. 1997;67:27–33.

Article  CAS  PubMed  Google Scholar 

Triratanachat S, Niruthisard S, Trivijitsilp P, et al. Angiogenesis in cervical intraepithelial neoplasia and early-staged uterine cervical squamous cell carcinoma: clinical significance. Int J Gynecol Cancer. 2006;16:575–80.

Article  CAS  PubMed  Google Scholar 

Bell AG. Upon the production of sound by radiant energy. Gibson Brothers Printers; 1881.

Google Scholar 

Beard P. Biomedical photoacoustic imaging. Interface focus. 2011;1:602–31.

Article  PubMed  PubMed Central  Google Scholar 

Horiguchi A, Tsujita K, Irisawa K, et al. A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy. Prostate. 2016;76:307–15.

Article  CAS  PubMed  Google Scholar 

Irisawa K, Hirota K, Hashimoto A, et al., editors. Photoacoustic imaging system for peripheral small-vessel imaging based on clinical ultrasound technology. In: Photons Plus Ultrasound: Imaging and Sensing 2016; 2016: International Society for Optics and Photonics.

Horiguchi A, Shinchi M, Nakamura A, et al. Pilot study of prostate cancer angiogenesis imaging using a photoacoustic imaging system. Urology. 2017;108:212–9.

Article  PubMed  Google Scholar 

Ebina Y, Yaegashi N, Katabuchi H, et al. Japan Society of Gynecologic Oncology guidelines 2011 for the treatment of uterine cervical cancer. Int J Clin Oncol. 2015;20:240–8.

Article  PubMed  Google Scholar 

Sherman ME, Solomon D, Schiffman M, Group A. Qualification of ASCUS: a comparison of equivocal LSIL and equivocal HSIL cervical cytology in the ASCUS LSIL Triage Study. Am J Clin Pathology. 2001;116:386–94.

Article  CAS  Google Scholar 

American National Standards Institute . Laser Institute of America. American National Standard for Safe Use of Lasers ANSI Z136.1–2014. 2014.

Jeng G-S, Li M-L, Kim M, Yoon SJ, Pitre JJ Jr, Li DS, et al. Real-time interleaved spectroscopic photoacoustic and ultrasound (PAUS) scanning with simultaneous fluence compensation and motion correction. Nat Commun. 2021;12:716.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kirillin M, Perekatova V, Turchin I, Subochev P. Fluence compensation in raster-scan optoacoustic angiography. Photoacoustics. 2017;8:59–67.

Article  PubMed  PubMed Central  Google Scholar 

Zhao L, Yang M, Jiang Y, Li C. Optical fluence compensation for handheld photoacoustic probe: an in vivo human study case. J Innov Opt Health Sci. 2017;10:1740002.

Article  Google Scholar 

Okawa S, Sei K, Hirasawa T, Irisawa K, Hirota K, Wada T, et al., editors. In vivo photoacoustic imaging of uterine cervical lesion and its image processing based on light propagation in biological medium. In: Photons plus ultrasound: imaging and sensing 2017; 2017: SPIE.

Bayer CL, Wlodarczyk BJ, Finnell RH, et al. Ultrasound-guided spectral photoacoustic imaging of hemoglobin oxygenation during development. Biomed Opt Express. 2017;8:757–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herrmann S, Petrov IY, Petrov Y, et al. Cerebral blood oxygenation measurements in neonates with optoacoustic technique. In: SPIE BiOS; 2017: Int Society for Optics and Photonics.

Guo W, Qiu Z, Guo C, et al. Multifunctional theranostic agent of Cu2 (OH) PO4 quantum dots for photoacoustic image-guided photothermal/photodynamic combination cancer therapy. ACS Appl Mater Interfaces. 2017;9:9348–58.

Article  CAS  PubMed  Google Scholar 

Zhang HK, Chen Y, Kang J, et al. Prostate-specific membrane antigen-targeted photoacoustic imaging of prostate cancer in vivo. J Biophoton. 2018;11: e201800021.

Article  Google Scholar 

Yao D, Wang Y, Zou R, Bian K, et al. Molecular engineered squaraine nanoprobe for NIR-II/photoacoustic imaging and photothermal therapy of metastatic breast cancer. ACS Appl Mater Interfaces. 2020;12:4276–84.

Article  CAS  PubMed  Google Scholar 

Qiu T, Lan Y, Wei Z, et al. In vivo multi-scale photoacoustic imaging guided photothermal therapy of cervical cancer based on customized laser system and targeted nanoparticles. Int J Nanomed. 2021;16:2879.

Article  CAS  Google Scholar 

Kothapalli S-R, Sonn GA, Choe JW, et al. Simultaneous transrectal ultrasound and photoacoustic human prostate imaging. Sci Transl Med. 2019;11:eaav269.

Article  Google Scholar 

Rich LJ, Seshadri M. Photoacoustic monitoring of tumor and normal tissue response to radiation. Sci Rep. 2016;6:1–10.

Article  Google Scholar 

Wilson KE, Bachawal SV, Tian L, et al. Multiparametric spectroscopic photoacoustic imaging of breast cancer development in a transgenic mouse model. Theranostics. 2014;4:1062.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif