Adams BM, Canniff NP, Guay KP, Hebert DN (2021) The role of endoplasmic reticulum chaperones in protein folding and quality control. Prog Mol Subcell Biol 59:27–50
CAS PubMed PubMed Central Google Scholar
Akaike A, Shimohama S, Misu Y (eds) (2018) Nicotinic acetylcholine receptor signaling in neuroprotection. Singapore. https://doi.org/10.1007/978-981-10-8488-1
Brockmöller S, Seeger T, Worek F, Rothmiller S (2023) Recombinant cellular model system for human muscle-type nicotinic acetylcholine receptor α12β1δε. Cell Stress Chaperones 28(6):1013–1025
PubMed PubMed Central Google Scholar
Caramelo JJ, Parodi AJ (2008) Getting in and out from calnexin/calreticulin cycles. J Biol Chem 283(16):10221–10225
CAS PubMed PubMed Central Google Scholar
Castillo M, Mulet J, Gutiérrez LM, Ortiz JA, Castelán F, Gerber S, Sala S, Sala F, Criado M (2005) Dual role of the RIC-3 protein in trafficking of serotonin and nicotinic acetylcholine receptors. J Biol Chem 280(29):27062–27068
Chen D, Dang H, Patrick JW (1998) Contributions of N-linked glycosylation to the expression of a functional α7-nicotinic receptor in Xenopus oocytes. J Neurochem 70(1):349–357
Delacour D, Cramm-Behrens CI, Drobecq H, Le Bivic A, Naim HY, Jacob R (2006) Requirement for galectin-3 in apical protein sorting. Curr Biol 16(4):408–414
Dellisanti CD, Yao Y, Stroud JC, Wang Z-Z, Chen L (2007) Crystal structure of the extracellular domain of nAChR alpha1 bound to alpha-bungarotoxin at 1.94 A resolution. Nat Neurosci 10(8):953–962
Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) α9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79(4):705–715
Gehle VM, Walcott EC, Nishizaki T, Sumikawa K (1997) N-glycosylation at the conserved sites ensures the expression of properly folded functional ACh receptors. Mol Brain Res 45(2):219–229
Green WN (1999) Ion channel assembly: creating structures that function. J Gen Physiol 113(2):163–170
CAS PubMed PubMed Central Google Scholar
Gu Y, Hall ZW (1988) Characterization of acetylcholine receptor subunits in developing and in denervated mammalian muscle. J Biol Chem 263(26):12878–12885
Gu Y, Ralston E, Murphy-Erdosh C, Black RA, Hall ZW (1989) Acetylcholine receptor in a C2 muscle cell variant is retained in the endoplasmic reticulum. J Cell Biol 109(2):729–738
Gu S, Matta JA, Lord B, Harrington AW, Sutton SW, Davini WB, Bredt DS (2016) Brain α7 nicotinic acetylcholine receptor assembly requires NACHO. Neuron 89(5):948–955
Guha P, Bandyopadhyaya G, Polumuri SK, Chumsri S, Gade P, Kalvakolanu DV, Ahmed H (2014) Nicotine promotes apoptosis resistance of breast cancer cells and enrichment of side population cells with cancer stem cell-like properties via a signaling cascade involving galectin-3, α9 nicotinic acetylcholine receptor and STAT3. Breast Cancer Res Treat 145(1):5–22
CAS PubMed PubMed Central Google Scholar
Huang S, Li S-X, Bren N, Cheng K, Gomoto R, Chen L, Sine SM (2013) Complex between α-bungarotoxin and an α7 nicotinic receptor ligand-binding domain chimaera. Biochem J 454(2):303–310
Keller SH, Taylor P (1999) Determinants responsible for assembly of the nicotinic acetylcholine receptor. J Gen Physiol 113(2):171–176
CAS PubMed PubMed Central Google Scholar
Keller SH, Lindstrom J, Taylor P (1998) Inhibition of glucose trimming with castanospermine reduces calnexin association and promotes proteasome degradation of the alpha-subunit of the nicotinic acetylcholine receptor. J Biol Chem 273(27):17064–17072
Kweon H-J, Gu S, Witham E, Dhara M, Yu H, Mandon ED, Jawhari A, Bredt DS (2020) NACHO engages N-glycosylation ER chaperone pathways for α7 nicotinic receptor assembly. Cell Rep 32(6):108025. https://doi.org/10.1016/j.celrep.2020.108025
Article CAS PubMed Google Scholar
Lansdell SJ, Gee VJ, Harkness PC, Doward AI, Baker ER, Gibb AJ, Millar NS (2005) RIC-3 enhances functional expression of multiple nicotinic acetylcholine receptor subtypes in mammalian cells. Mol Pharmacol 68(5):1431–1438
Loring RH (2022) Speculation on how RIC-3 and other chaperones facilitate α7 nicotinic receptor folding and assembly. Molecules 27(14):4527. https://doi.org/10.3390/molecules27144527
Article CAS PubMed PubMed Central Google Scholar
Marinko JT, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR (2019) Folding and misfolding of human membrane proteins in health and disease: from single molecules to cellular proteostasis. Chem Rev 119(9):5537–5606
CAS PubMed PubMed Central Google Scholar
Martin PT, Sanes JR (1995) Role for a synapse-specific carbohydrate in agrin-induced clustering of acetylcholine receptors. Neuron 14(4):743–754
Matta JA, Gu S, Davini WB, Lord B, Siuda ER, Harrington AW, Bredt DS (2017) NACHO mediates nicotinic acetylcholine receptor function throughout the brain. Cell Rep 19(4):688–696
Merlie JP, Lindstrom J (1983) Assembly in vivo of mouse muscle acetylcholine receptor: identification of an α subunit species that may be an assembly intermediate. Cell 34(3):747–757
Millar NS (2008) RIC-3: a nicotinic acetylcholine receptor chaperone. Br J Pharmacol 153(S1):177–183
Millar NS, Harkness PC (2008) Assembly and trafficking of nicotinic acetylcholine receptors (Review). Mol Membr Biol 25(4):279–292
Mohanty S, Chaudhary BP, Zoetewey D (2020) Structural insight into the mechanism of N-linked glycosylation by oligosaccharyltransferase. Biomolecules 10(4):624. https://doi.org/10.3390/biom10040624
Article CAS PubMed PubMed Central Google Scholar
Murray TA, Liu Q, Whiteaker P, Wu J, Lukas RJ (2009) Nicotinic acetylcholine receptor alpha7 subunits with a C2 cytoplasmic loop yellow fluorescent protein insertion form functional receptors. Acta Pharmacol Sin 30(6):828–841
CAS PubMed PubMed Central Google Scholar
Nakagawa F, Schulte BA, Wu JY, Spicer SS (1986) GABAergic neurons of rodent brain correspond partially with those staining for glycoconjugate with terminal N-acetylgalactosamine. J Neurocytol 15:389–396
Obergrussberger A, Haarmann C, Rinke I, Becker N, Guinot D, Brueggemann A, Stoelzle-Feix S, George M, Fertig N (2014) Automated patch clamp analysis of nAChα7 and Nav1. 7 channels. Curr Protocols Pharmacol 65(1):11–13
Poulter L, Burlingame AL (1990) Desorption mass spectrometry of oligosaccharides coupled with hydrophobic chromophores. In: Methods in enzymology, vol. 193. Academic Press, pp 661–689
Roth FC, Numberger M, Draguhn A (2023) Patch-clamp-technik. Springer, Berlin, Heidelberg
Rudell JC, Borges LS, Rudell JB, Beck KA, Ferns MJ (2014) Determinants in the β and δ subunit cytoplasmic loop regulate Golgi trafficking and surface expression of the muscle acetylcholine receptor. J Biol Chem 289(1):203–214
Rudell JC, Borges LS, Yarov-Yarovoy V, Ferns M (2020) The MX-Helix of muscle nAChR subunits regulates receptor assembly and surface trafficking. Front Mol Neurosci 13:48
CAS PubMed PubMed Central Google Scholar
Sanes JR, Cheney JM (1982) Lectin binding reveals a synapse-specific carbohydrate in skeletal muscle. Nature 300(5893):646–647
Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22(1):389–442
Scott LJ, Bacou F, Sanes JR (1988) A synapse-specific carbohydrate at the neuromuscular junction: association with both acetylcholinesterase and a glycolipid. J Neurosci 8(3):932–944
Comments (0)