Global research and current trends on nanotherapy in lung cancer research: a bibliometric analysis of 20 years

Chiang C-L, Cheng M-H, Lin C-H. From nanoparticles to cancer nanomedicine: old problems with new solutions. Nanomaterials. 2021;11:1727.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng Q, Zhang H, Dong Z, Zhou Y, Ma J. Circulating 25-hydroxyvitamin D and lung cancer risk and survival: a dose–response meta-analysis of prospective cohort studies. Medicine. 2017;96: e8613.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kratzer TB, Bandi P, Freedman ND, Smith RA, Travis WD, Jemal A, Siegel RL. Lung cancer statistics, 2023. Cancer. 2024;130:1330–48.

Article  PubMed  Google Scholar 

Wang J, Zhou T, Liu Y, Chen S, Yu Z. Application of nanoparticles in the treatment of lung cancer with emphasis on receptors. Front Pharmacol. 2022;10(12): 781425.

Article  Google Scholar 

Khanmohammadi A, Aghaie A, Vahedi E, Qazvini A, Ghanei M, Afkhami A, Hajian A, Bagheri H. Electrochemical biosensors for the detection of lung cancer biomarkers: a review. Talanta. 2020;1(206): 120251.

Article  Google Scholar 

Sharma A, Shambhwani D, Pandey S, Singh J, Lalhlenmawia H, Kumarasamy M, Singh SK, Chellappan DK, Gupta G, Prasher P, Dua K. Advances in lung cancer treatment using nanomedicines. ACS Omega. 2022;8(1):10–41.

Article  PubMed  PubMed Central  Google Scholar 

Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 2016;5(3):288.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bakx R, Emous M, Legemate D, Zoetmulder F, van Tienhoven G, Bemelman W, van Lanschot J. Harm and benefits of short-term pre-operative radiotherapy in patients with resectable rectal carcinomas. Eur J Surg Oncol. 2006;32:520–6.

Article  CAS  PubMed  Google Scholar 

Guo J, Liu H, Zheng J. SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets. Nucleic Acids Res. 2016;44(D1):D1011–7.

Article  CAS  PubMed  Google Scholar 

Jiang Q, Yu L, Chen Y. Engineering self-assembled nanomedicines composed of clinically approved medicines for enhanced tumor nanotherapy. Nanomaterials. 2023;13(18):2499.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen Y, Li M, Liu T, Liu J, Xie Y, Zhang J, Xu S, Liu H. A dual-functional HER2 aptamer-conjugated, pH-activated mesoporous silica nanocarrier-based drug delivery system provides in vitro synergistic cytotoxicity in HER2-positive breast cancer cells. Int J Nanomed. 2019;14:4029–44.

Article  CAS  Google Scholar 

Dang Y, Guan J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater Med. 2020;1:10–9.

Article  PubMed  PubMed Central  Google Scholar 

Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Can Res. 1994;54(4):987–92.

CAS  Google Scholar 

Jain S, Hirst D, O’Sullivan J. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol. 2012;85(1010):101–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rajeshkumar S. Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J Genetic Eng Biotechnol. 2016;14(1):195–202.

Article  CAS  Google Scholar 

Vines JB, Yoon J-H, Ryu N-E, Lim D-J, Park H. Gold nanoparticles for photothermal cancer therapy. Front Chem. 2019;7:167.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen F, Hableel G, Zhao ER, Jokerst JV. Multifunctional nanomedicine with silica: role of silica in nanoparticles for theranostic, imaging, and drug monitoring. J Colloid Interface Sci. 2018;521:261–79.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Howell M, Wang C, Mahmoud A, Hellermann G, Mohapatra SS, Mohapatra S. Dual-function theranostic nanoparticles for drug delivery and medical imaging contrast: perspectives and challenges for use in lung diseases. Drug Deliv Transl Res. 2013;3:352–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jain KK. Drug delivery systems—an overview. In: Jain KK, editor. Drug delivery systems. New York: Humana Press; 2008. https://doi.org/10.1007/978-1-59745-210-6.

Chapter  Google Scholar 

Abaszadeh F, Ashoub MH, Khajouie G, Amiri M. Nanotechnology development in surgical applications: recent trends and developments. Eur J Med Res. 2023;28(1):537.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Babu A, Templeton AK, Munshi A, Ramesh R. Nanoparticle-based drug delivery for therapy of lung cancer: progress and challenges. J Nanomater. 2013;2013: 863951.

Article  Google Scholar 

Ellegaard O, Wallin JA. The bibliometric analysis of scholarly production: how great is the impact? Scientometrics. 2015;105:1809–31.

Article  PubMed  PubMed Central  Google Scholar 

Belter CW. Bibliometric indicators: opportunities and limits. J Med Libr Assoc. 2015;103(4):219.

Article  PubMed  PubMed Central  Google Scholar 

Møller A, Myles P. What makes a good systematic review and meta-analysis? Br J Anaesthesia. 2016;117(4):428–30.

Article  Google Scholar 

Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of pubmed, scopus, web of science, and google scholar: strengths and weaknesses. FASEB J. 2008;22(2):338–42.

Article  CAS  PubMed  Google Scholar 

Kulkarni AV, Aziz B, Shams I, Busse JW. Comparisons of citations in web of science, scopus, and google scholar for articles published in general medical journals. JAMA. 2009;302(10):1092–6.

Article  CAS  PubMed  Google Scholar 

Agarwal A, Durairajanayagam D, Tatagari S, Esteves SC, Harlev A, Henkel R, et al. Bibliometrics: tracking research impact by selecting the appropriate metrics. Asian J Androl. 2016;18(2):296.

Article  PubMed  PubMed Central  Google Scholar 

Hirsch JE. An index to quantify an individual’s scientific research output. Proc Natl Acad Sci. 2005;102(46):16569–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aghaei Chadegani A, Salehi H, Md Yunus M, Farhadi H, Fooladi M, Farhadi M, Ale Ebrahim N. A comparison between two main academic literature collections: web of science and scopus databases. Asian Soc Sci. 2013;9(5):18–26.

Google Scholar 

Musa IH, Afolabi LO, Zamit I, Musa TH, Musa HH, Tassang A, Akintunde TY, Li W. Artificial intelligence and machine learning in cancer research: a systematic and thematic analysis of the top 100 cited articles indexed in Scopus database. Cancer Control. 2022;29:10732748221095946.

Article  PubMed  PubMed Central  Google Scholar 

AlRyalat SAS, Malkawi LW, Momani SM. Comparing bibliometric analysis using PubMed, Scopus, and Web of Science databases. J Vis Exp. 2019;152: e58494.

Google Scholar 

He J, Wu W. Comprehensive landscape and future perspectives of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC): Based on a bibliometric analysis. Non-coding RNA Res. 2023;8(1):33–52.

Article  Google Scholar 

Lin L, Liang L, Wang M, Huang R, Gong M, Song G, Hao T. A bibliometric analysis of worldwide cancer research using machine learning methods. Cancer Innov. 2023;2(3):219–32. https://doi.org/10.1002/cai2.68.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif