Chiang C-L, Cheng M-H, Lin C-H. From nanoparticles to cancer nanomedicine: old problems with new solutions. Nanomaterials. 2021;11:1727.
Article CAS PubMed PubMed Central Google Scholar
Feng Q, Zhang H, Dong Z, Zhou Y, Ma J. Circulating 25-hydroxyvitamin D and lung cancer risk and survival: a dose–response meta-analysis of prospective cohort studies. Medicine. 2017;96: e8613.
Article CAS PubMed PubMed Central Google Scholar
Kratzer TB, Bandi P, Freedman ND, Smith RA, Travis WD, Jemal A, Siegel RL. Lung cancer statistics, 2023. Cancer. 2024;130:1330–48.
Wang J, Zhou T, Liu Y, Chen S, Yu Z. Application of nanoparticles in the treatment of lung cancer with emphasis on receptors. Front Pharmacol. 2022;10(12): 781425.
Khanmohammadi A, Aghaie A, Vahedi E, Qazvini A, Ghanei M, Afkhami A, Hajian A, Bagheri H. Electrochemical biosensors for the detection of lung cancer biomarkers: a review. Talanta. 2020;1(206): 120251.
Sharma A, Shambhwani D, Pandey S, Singh J, Lalhlenmawia H, Kumarasamy M, Singh SK, Chellappan DK, Gupta G, Prasher P, Dua K. Advances in lung cancer treatment using nanomedicines. ACS Omega. 2022;8(1):10–41.
Article PubMed PubMed Central Google Scholar
Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 2016;5(3):288.
Article CAS PubMed PubMed Central Google Scholar
Bakx R, Emous M, Legemate D, Zoetmulder F, van Tienhoven G, Bemelman W, van Lanschot J. Harm and benefits of short-term pre-operative radiotherapy in patients with resectable rectal carcinomas. Eur J Surg Oncol. 2006;32:520–6.
Article CAS PubMed Google Scholar
Guo J, Liu H, Zheng J. SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets. Nucleic Acids Res. 2016;44(D1):D1011–7.
Article CAS PubMed Google Scholar
Jiang Q, Yu L, Chen Y. Engineering self-assembled nanomedicines composed of clinically approved medicines for enhanced tumor nanotherapy. Nanomaterials. 2023;13(18):2499.
Article CAS PubMed PubMed Central Google Scholar
Shen Y, Li M, Liu T, Liu J, Xie Y, Zhang J, Xu S, Liu H. A dual-functional HER2 aptamer-conjugated, pH-activated mesoporous silica nanocarrier-based drug delivery system provides in vitro synergistic cytotoxicity in HER2-positive breast cancer cells. Int J Nanomed. 2019;14:4029–44.
Dang Y, Guan J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater Med. 2020;1:10–9.
Article PubMed PubMed Central Google Scholar
Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Can Res. 1994;54(4):987–92.
Jain S, Hirst D, O’Sullivan J. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol. 2012;85(1010):101–13.
Article CAS PubMed PubMed Central Google Scholar
Rajeshkumar S. Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J Genetic Eng Biotechnol. 2016;14(1):195–202.
Vines JB, Yoon J-H, Ryu N-E, Lim D-J, Park H. Gold nanoparticles for photothermal cancer therapy. Front Chem. 2019;7:167.
Article CAS PubMed PubMed Central Google Scholar
Chen F, Hableel G, Zhao ER, Jokerst JV. Multifunctional nanomedicine with silica: role of silica in nanoparticles for theranostic, imaging, and drug monitoring. J Colloid Interface Sci. 2018;521:261–79.
Article CAS PubMed PubMed Central Google Scholar
Howell M, Wang C, Mahmoud A, Hellermann G, Mohapatra SS, Mohapatra S. Dual-function theranostic nanoparticles for drug delivery and medical imaging contrast: perspectives and challenges for use in lung diseases. Drug Deliv Transl Res. 2013;3:352–63.
Article CAS PubMed PubMed Central Google Scholar
Jain KK. Drug delivery systems—an overview. In: Jain KK, editor. Drug delivery systems. New York: Humana Press; 2008. https://doi.org/10.1007/978-1-59745-210-6.
Abaszadeh F, Ashoub MH, Khajouie G, Amiri M. Nanotechnology development in surgical applications: recent trends and developments. Eur J Med Res. 2023;28(1):537.
Article CAS PubMed PubMed Central Google Scholar
Babu A, Templeton AK, Munshi A, Ramesh R. Nanoparticle-based drug delivery for therapy of lung cancer: progress and challenges. J Nanomater. 2013;2013: 863951.
Ellegaard O, Wallin JA. The bibliometric analysis of scholarly production: how great is the impact? Scientometrics. 2015;105:1809–31.
Article PubMed PubMed Central Google Scholar
Belter CW. Bibliometric indicators: opportunities and limits. J Med Libr Assoc. 2015;103(4):219.
Article PubMed PubMed Central Google Scholar
Møller A, Myles P. What makes a good systematic review and meta-analysis? Br J Anaesthesia. 2016;117(4):428–30.
Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of pubmed, scopus, web of science, and google scholar: strengths and weaknesses. FASEB J. 2008;22(2):338–42.
Article CAS PubMed Google Scholar
Kulkarni AV, Aziz B, Shams I, Busse JW. Comparisons of citations in web of science, scopus, and google scholar for articles published in general medical journals. JAMA. 2009;302(10):1092–6.
Article CAS PubMed Google Scholar
Agarwal A, Durairajanayagam D, Tatagari S, Esteves SC, Harlev A, Henkel R, et al. Bibliometrics: tracking research impact by selecting the appropriate metrics. Asian J Androl. 2016;18(2):296.
Article PubMed PubMed Central Google Scholar
Hirsch JE. An index to quantify an individual’s scientific research output. Proc Natl Acad Sci. 2005;102(46):16569–72.
Article CAS PubMed PubMed Central Google Scholar
Aghaei Chadegani A, Salehi H, Md Yunus M, Farhadi H, Fooladi M, Farhadi M, Ale Ebrahim N. A comparison between two main academic literature collections: web of science and scopus databases. Asian Soc Sci. 2013;9(5):18–26.
Musa IH, Afolabi LO, Zamit I, Musa TH, Musa HH, Tassang A, Akintunde TY, Li W. Artificial intelligence and machine learning in cancer research: a systematic and thematic analysis of the top 100 cited articles indexed in Scopus database. Cancer Control. 2022;29:10732748221095946.
Article PubMed PubMed Central Google Scholar
AlRyalat SAS, Malkawi LW, Momani SM. Comparing bibliometric analysis using PubMed, Scopus, and Web of Science databases. J Vis Exp. 2019;152: e58494.
He J, Wu W. Comprehensive landscape and future perspectives of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC): Based on a bibliometric analysis. Non-coding RNA Res. 2023;8(1):33–52.
Lin L, Liang L, Wang M, Huang R, Gong M, Song G, Hao T. A bibliometric analysis of worldwide cancer research using machine learning methods. Cancer Innov. 2023;2(3):219–32. https://doi.org/10.1002/cai2.68.
Comments (0)