Amemiya K, Naito E, Takemura H (2021) Age dependency and lateralization in the three branches of the human superior longitudinal fasciculus. Cortex 139:116–133. https://doi.org/10.1016/j.cortex.2021.02.027
Andersson JLR, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20(2):870–888. https://doi.org/10.1016/S1053-8119(03)00336-7
Andersson JLR, Graham MS, Zsoldos E, Sotiropoulos SN (2016) Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. NeuroImage 141:556–572. https://doi.org/10.1016/j.neuroimage.2016.06.058
Barhoun P, Fuelscher I, Kothe EJ, He JL, Youssef GJ, Enticott PG, Williams J, Hyde C (2019) Motor imagery in children with DCD: a systematic and meta-analytic review of hand-rotation task performance. Neurosci Biobehavioral Reviews 99:282–297. https://doi.org/10.1016/j.neubiorev.2019.02.002
Barhoun P, Fuelscher I, Do M, He JL, Bekkali S, Cerins A, Youssef GJ, Williams J, Enticott PG, Hyde C (2021) Mental rotation performance in young adults with and without developmental coordination disorder. Hum Mov Sci 77:102787. https://doi.org/10.1016/j.humov.2021.102787
Bastiani M, Cottaar M, Fitzgibbon SP, Suri S, Alfaro-Almagro F, Sotiropoulos SN, Jbabdi S, Andersson JLR (2019) Automated quality control for within and between studies diffusion MRI data using a non-parametric framework for movement and distortion correction. NeuroImage 184:801–812. https://doi.org/10.1016/j.neuroimage.2018.09.073
Benjamini Y, Hochberg Y (1995) Controlling the false Discovery rate: a practical and powerful Approach to multiple testing. J Roy Stat Soc: Ser B (Methodol) 57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
Bhoyroo R, Hands B, Caeyenberghs K, de Luca A, Leemans A, Wigley A, Hyde C (2022) Association between motor planning and the frontoparietal network in children: an exploratory Multimodal Study. J Int Neuropsychol Soc 28(9):926–936. https://doi.org/10.1017/S1355617721001168
Bianco KM, Fuelscher I, Lum JAG, Singh M, Enticott PG, Caeyenberghs K, Hyde C (2023) Individual differences in procedural learning are associated with fiber specific white matter microstructure of the superior cerebellar peduncles in healthy adults. Cortex 161:1–12. https://doi.org/10.1016/j.cortex.2023.01.006
Bostan AC, Strick PL (2010) The cerebellum and basal ganglia are interconnected. Neuropsychol Rev 20(3):261–270. https://doi.org/10.1007/s11065-010-9143-9
Article PubMed PubMed Central Google Scholar
Budisavljevic S, Dell’Acqua F, Zanatto D, Begliomini C, Miotto D, Motta R, Castiello U (2017) Asymmetry and structure of the fronto-parietal networks underlie visuomotor processing in humans. Cereb Cortex 27(2):1532–1544. https://doi.org/10.1093/cercor/bhv348
Butson ML, Hyde C, Steenbergen B, Williams J (2014) Assessing motor imagery using the hand rotation task: does performance change across childhood? Hum Mov Sci 35:50–65. https://doi.org/10.1016/j.humov.2014.03.013
Cacciola A, Calamuneri A, Milardi D, Mormina E, Chillemi G, Marino S, Naro A, Rizzo G, Anastasi G, Quartarone A (2017) A connectomic analysis of the human basal Ganglia network. Frontiers in Neuroanatomy 11. https://www.frontiersin.org/articles/10.3389/fnana.2017.00085
Caeyenberghs K, Tsoupas J, Wilson PH, Smits-Engelsman BCM (2009) Motor Imagery development in primary school children. Dev Neuropsychol 34(1):103–121. https://doi.org/10.1080/87565640802499183
de Lange FP, Helmich RC, Toni I (2006) Posture influences motor imagery: an fMRI study. NeuroImage 33(2):609–617. https://doi.org/10.1016/j.neuroimage.2006.07.017
Decety J (1996) The neurophysiological basis of motor imagery. Behav Brain Res, 8
Dhollander T, Connelly A (2016) A novel iterative approach to reap the benefits of multi-tissue CSD from just single-shell (+ b = 0) diffusion MRI data
Dhollander T, Clemente A, Singh M, Boonstra F, Civier O, Duque JD, Egorova N, Enticott P, Fuelscher I, Gajamange S, Genc S, Gottlieb E, Hyde C, Imms P, Kelly C, Kirkovski M, Kolbe S, Liang X, Malhotra A, Caeyenberghs K (2021) Fixel-based analysis of Diffusion MRI: methods, applications, challenges and opportunities. NeuroImage 241:118417. https://doi.org/10.1016/j.neuroimage.2021.118417
Fischl B (2012) FreeSurfer NeuroImage 62(2):774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021
Fuelscher I, Williams J, Hyde C (2015a) Developmental improvements in reaching correction efficiency are associated with an increased ability to represent action mentally. J Exp Child Psychol 140:74–91. https://doi.org/10.1016/j.jecp.2015.06.013
Fuelscher I, Williams J, Enticott PG, Hyde C (2015b) Reduced motor imagery efficiency is associated with online control difficulties in children with probable developmental coordination disorder. Res Dev Disabil 45–46:239–252. https://doi.org/10.1016/j.ridd.2015.07.027
Fuelscher I, Williams J, Wilmut K, Enticott PG, Hyde C (2016) Modeling the maturation of grip selection planning and action representation: insights from typical and atypical motor development. Frontiers in Psychology 7. https://doi.org/10.3389/fpsyg.2016.00108
Fuelscher I, Hyde C, Efron D, Silk TJ (2021) Manual dexterity in late childhood is associated with maturation of the corticospinal tract. NeuroImage 226:117583. https://doi.org/10.1016/j.neuroimage.2020.117583
Gabbard C (2009) Studying action representation in children via motor imagery. Brain Cogn 71(3):234–239. https://doi.org/10.1016/j.bandc.2009.08.011
Gabbard C, Lee J, Caçola P (2013) Role of working memory in transformation of visual and motor representations for use in mental simulation. Cogn Neurosci 4(3–4):210–216. https://doi.org/10.1080/17588928.2013.820180
Geeraert BL, Chamberland M, Lebel RM, Lebel C (2020) Multimodal principal component analysis to identify major features of white matter structure and links to reading. PLoS ONE 15(8):e0233244. https://doi.org/10.1371/journal.pone.0233244
Article CAS PubMed PubMed Central Google Scholar
Genc S, Tax CMW, Raven EP, Chamberland M, Parker GD, Jones DK (2020a) Impact of b-value on estimates of apparent fibre density. Hum Brain Mapp 41(10):2583–2595. https://doi.org/10.1002/hbm.24964
Genc S, Malpas CB, Gulenc A, Sciberras E, Efron D, Silk TJ, Seal ML (2020b) Longitudinal patterns of white matter fibre density and morphology in children are associated with age and pubertal stage. Dev Cogn Neurosci 45:100853. https://doi.org/10.1016/j.dcn.2020.100853
Grohs MN, Reynolds JE, Dewey D, Lebel C (2018) Corpus callosum microstructure is associated with motor function in preschool children. NeuroImage 183:828–835. https://doi.org/10.1016/j.neuroimage.2018.09.004
Grosprêtre S, Ruffino C, Lebon F (2016) Motor imagery and cortico-spinal excitability: a review. Eur J Sport Sci 16(3):317–324. https://doi.org/10.1080/17461391.2015.1024756
Hanakawa T (2016) Organizing motor imageries. Neurosci Res 104:56–63. https://doi.org/10.1016/j.neures.2015.11.003
Hardwick RM, Caspers S, Eickhoff SB, Swinnen SP (2018) Neural correlates of action: comparing meta-analyses of imagery, observation, and execution. Neurosci Biobehavioral Reviews 94:31–44. https://doi.org/10.1016/j.neubiorev.2018.08.003
Hétu S, Grégoire M, Saimpont A, Coll M-P, Eugène F, Michon P-E, Jackson PL (2013) The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehavioral Reviews 37(5):930–949. https://doi.org/10.1016/j.neubiorev.2013.03.017
Hyde C, Wilmut K, Fuelscher I, Williams J (2013) Does implicit motor imagery ability predict reaching correction efficiency? a test of recent models of human motor control. J Mot Behav 45(3):259–269. https://doi.org/10.1080/00222895.2013.785927
Hyde C, Fuelscher I, Buckthought K, Enticott PG, Gitay MA, Williams J (2014) Motor imagery is less efficient in adults with probable developmental coordination disorder: evidence from the hand rotation task. Res Dev Disabil 35(11):3062–3070. https://doi.org/10.1016/j.ridd.2014.07.042
Hyde C, Fuelscher I, Williams J, Lum JAG, He J, Barhoun P, Enticott PG (2018) Corticospinal excitability during motor imagery is reduced in young adults with developmental coordination disorder. Res Dev Disabil 72:214–224.
Comments (0)