Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1247/csf.07044
Article PubMed CAS Google Scholar
Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Samali A (2019) Endoplasmic reticulum stress signaling—from basic mechanisms to clinical applications. FEBS J 286(2):241–278. https://doi.org/10.1111/febs.14608
Article PubMed CAS Google Scholar
Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102. https://doi.org/10.1155/2014/603980
Article PubMed CAS Google Scholar
Madden E, Logue SE, Healy SJ, Manie S, Samali A (2019) The role of the unfolded protein response in cancer progression: from oncogenesis to chemoresistance. Biol Cell 111(1):1–17. https://doi.org/10.1038/oncsis.2017.72
Clarke R, Shajahan AN, Wang Y, Tyson JJ, Riggins RB, Weiner LM, Hilakivi-Clarke LA (2011) Endoplasmic reticulum stress, the unfolded protein response, and gene network modeling in antiestrogen resistant breast cancer. Hormone Mol Biol Clin Investig 5(1):35–44. https://doi.org/10.1016/j.bbamcr.2013.05.020
Rouschop KM, Dubois LJ, Keulers TG, van den Beucken T, Lambin P, Bussink J, Wouters BG (2013) PERK/eIF2α signaling protects therapy resistant hypoxic cells through induction of glutathione synthesis and protection against ROS. Proc Natl Acad Sci 110(12):4622–4627. https://doi.org/10.1515/hmbci.2010.073
Article PubMed PubMed Central CAS Google Scholar
Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107(7):881–891. https://doi.org/10.1016/j.cell.2011.02.013
Article PubMed CAS Google Scholar
Adachi Y, Yamamoto K, Okada T, Yoshida H, Harada A, Mori K (2008) ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct 33(1):75–89. https://doi.org/10.1038/nrm3270
Article PubMed CAS Google Scholar
Iurlaro R, Muñoz-Pinedo C (2016) Cell death induced by endoplasmic reticulum stress. FEBS J 283(14):2640–2652. https://doi.org/10.1111/febs.13598
Article PubMed CAS Google Scholar
Wang M, Kaufman RJ (2014) The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer 14(9):581–597. https://doi.org/10.1002/bies.202300211
Article PubMed CAS Google Scholar
Ávalos Y, Canales J, Bravo-Sagua R, Criollo A, Lavandero S, Quest AF (2014) Tumor suppression and promotion by autophagy. BioMed Res Int. https://doi.org/10.1016/j.molcel.2010.09.023
Article PubMed PubMed Central Google Scholar
Yun CW, Lee SH (2018) The roles of autophagy in cancer. Int J Mol Sci 19(11):3466. https://doi.org/10.1016/j.heliyon.2024.e25937
Article PubMed PubMed Central CAS Google Scholar
Li X, He S, Ma B (2020) Autophagy and autophagy-related proteins in cancer. Mol Cancer 19(1):12. https://doi.org/10.1186/s12943-020-1138-4
Article PubMed PubMed Central CAS Google Scholar
Loi M, Fregno I, Guerra C, Molinari M (2018) Eat it right: ER-phagy and recovER-phagy. Biochem Soc Trans 46(3):699–706. https://doi.org/10.1042/BST20170354
Article PubMed PubMed Central CAS Google Scholar
Zhou H, Wang K, Wang M, Zhao W, Zhang C, Cai M, Zhao W (2022) ER-phagy in the occurrence and development of cancer. Biomedicines 10(3):707. https://doi.org/10.1111/boc.201800050
Article PubMed PubMed Central CAS Google Scholar
Beriault DR, Werstuck GH (2013) Detection and quantification of endoplasmic reticulum stress in living cells using the fluorescent compound, Thioflavin T. Biochim Biophys Acta (BBA) Mol Cell Res 1833(10):2293–2301. https://doi.org/10.3390/cancers10100344
Biederbick A, Kern HF, Elsässer HP (1995) Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol 66(1):3–14. https://doi.org/10.1091/mbc.E10-01-0023
Article PubMed CAS Google Scholar
Rekha P, Gupta A, Goud KS, Biswas B, Bhattar S, Vijayakumar G, Selvaraju S (2023) GPER induces mitochondrial fission through p44/42 MAPK-Drp1 pathway in breast cancer cells. Biochem Biophys Res Commun 643:16–23. https://doi.org/10.1038/ncb2797
Article PubMed CAS Google Scholar
Avril T, Vauleon E, Chevet E (2017) Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis 6(8):e373–e373. https://doi.org/10.1038/s41421-020-0161-3
Article PubMed PubMed Central CAS Google Scholar
Oakes SA (2020) Endoplasmic reticulum stress signaling in cancer cells. Am J Pathol 190(5):934–946. https://doi.org/10.1016/j.ajpath.2020.01.010
Article PubMed PubMed Central CAS Google Scholar
Muaddi H, Majumder M, Peidis P, Papadakis AI, Holcik M, Scheuner D, Koromilas AE (2010) Phosphorylation of eIF2α at serine 51 is an important determinant of cell survival and adaptation to glucose deficiency. Mol Biol Cell 21(18):3220–3231. https://doi.org/10.1038/s41467-023-38401-z
Article PubMed PubMed Central CAS Google Scholar
Rajesh K, Krishnamoorthy J, Kazimierczak U, Tenkerian C, Papadakis AI, Wang S, Koromilas AE (2015) Phosphorylation of the translation initiation factor eIF2α at serine 51 determines the cell fate decisions of Akt in response to oxidative stress. Cell Death Dis 6(1):e1591. https://doi.org/10.1038/cddis.2014.554
Article PubMed PubMed Central CAS Google Scholar
Tsuru A, Imai Y, Saito M, Kohno K (2016) Novel mechanism of enhancing IRE1α-XBP1 signalling via the PERK-ATF4 pathway. Sci Rep 6(1):1–8. https://doi.org/10.1016/j.bbrc.2022.12.061
Lei Y, Yu H, Ding S, Liu H, Liu C, Fu R (2024) Molecular mechanism of ATF6 in unfolded protein response and its role in disease. Heliyon. https://doi.org/10.1073/pnas.1210633110
Article PubMed PubMed Central Google Scholar
Ye J, Rawson RB, Komuro R, Chen X, Davé UP, Prywes R, Goldstein JL (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6(6):1355–1364. https://doi.org/10.1038/s41598-019-46657-z
Article PubMed CAS Google Scholar
Kroemer G, Mariño G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40(2):280–293. https://doi.org/10.1007/s10528-022-10281-w
Article PubMed PubMed Central CAS Google Scholar
Wang C, Wang H, Zhang D, Luo W, Liu R, Xu D, Liu Z (2018) Phosphorylation of ULK1 affects autophagosome fusion and links chaperone-mediated autophagy to macroautophagy. Nat Commun 9(1):3492. https://doi.org/10.1038/srep24217
Comments (0)