Potential promising of synthetic lethality in cancer research and treatment

Aarts M, Sharpe R, Garcia-Murillas I, Gevensleben H, Hurd MS, Shumway SD, Turner NC (2012) Forced mitotic entry of S-phase cells as a therapeutic strategy induced by inhibition of WEE1. Cancer Discov 2(6):524–539. https://doi.org/10.1158/2159-8290.Cd-11-0320

Article  CAS  PubMed  Google Scholar 

Ahn J, Urist M, Prives C (2004) The Chk2 protein kinase. DNA Repair (Amst) 3(8–9):1039–1047. https://doi.org/10.1016/j.dnarep.2004.03.033

Article  CAS  PubMed  Google Scholar 

Albarakati N, Abdel-Fatah TM, Doherty R, Russell R, Agarwal D, Moseley P, Madhusudan S (2015) Targeting BRCA1-BER deficient breast cancer by ATM or DNA-PKcs blockade either alone or in combination with cisplatin for personalized therapy. Mol Oncol 9(1):204–217. https://doi.org/10.1016/j.molonc.2014.08.001

Article  CAS  PubMed  Google Scholar 

An J, Yang DY, Xu QZ, Zhang SM, Huo YY, Shang ZF, Zhou PK (2008) DNA-dependent protein kinase catalytic subunit modulates the stability of c-Myc oncoprotein. Mol Cancer 7:32. https://doi.org/10.1186/1476-4598-7-32

Article  CAS  PubMed  PubMed Central  Google Scholar 

An L, Cao Z, Nie P, Zhang H, Tong Z, Chen F, Zhou Z (2022) Combinatorial targeting of Hippo-STRIPAK and PARP elicits synthetic lethality in gastrointestinal cancers. J Clin Invest, 132(9). https://doi.org/10.1172/jci155468

Ashworth A, Lord CJ (2018) Synthetic lethal therapies for cancer: what’s next after PARP inhibitors? Nat Rev Clin Oncol 15(9):564–576. https://doi.org/10.1038/s41571-018-0055-6

Article  CAS  PubMed  Google Scholar 

Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, Tutt A (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376(9737):245–251. https://doi.org/10.1016/s0140-6736(10)60893-8

Article  CAS  PubMed  Google Scholar 

Barber LJ, Sandhu S, Chen L, Campbell J, Kozarewa I, Fenwick K, Ashworth A (2013) Secondary mutations in BRCA2 are associated with clinical resistance to a PARP inhibitor. J Pathol 229(3):422–429. https://doi.org/10.1002/path.4140

Article  CAS  PubMed  Google Scholar 

Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Garraway LA (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391):603–607. https://doi.org/10.1038/nature11003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bender A, Pringle JR (1991) Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol Cell Biol 11(3):1295–1305. https://doi.org/10.1128/mcb.11.3.1295-1305.1991

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernards R, Brummelkamp TR, Beijersbergen RL (2006) shRNA libraries and their use in cancer genetics. Nat Methods 3(9):701–706. https://doi.org/10.1038/nmeth921

Article  CAS  PubMed  Google Scholar 

Biechele-Speziale DJ, Sutton TB, Delaney S (2022) Obstacles and opportunities for base excision repair in chromatin. DNA Repair (Amst) 116:103345. https://doi.org/10.1016/j.dnarep.2022.103345

Article  CAS  PubMed  Google Scholar 

Biegała Ł, Gajek A, Marczak A, Rogalska A (2021) PARP inhibitor resistance in ovarian cancer: underlying mechanisms and therapeutic approaches targeting the ATR/CHK1 pathway. Biochim Biophys Acta Rev Cancer 1876(2):188633. https://doi.org/10.1016/j.bbcan.2021.188633

Article  CAS  PubMed  Google Scholar 

Blackford AN, Jackson SP (2017) ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell 66(6):801–817. https://doi.org/10.1016/j.molcel.2017.05.015

Article  CAS  PubMed  Google Scholar 

Bonelli MA, Digiacomo G, Fumarola C, Alfieri R, Quaini F, Falco A, Petronini PG (2017) Combined inhibition of CDK4/6 and PI3K/AKT/mTOR pathways induces a synergistic anti-tumor effect in malignant pleural mesothelioma cells. Neoplasia 19(8):637–648. https://doi.org/10.1016/j.neo.2017.05.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Botezatu A, Iancu IV, Popa O, Plesa A, Manda D, Huica I, Badiu C (2016) Mechanisms of oncogene activation. New Aspects Mol Cell Mech Human Carcinogen, 9(1)

Bradbury A, Hall S, Curtin N, Drew Y (2020) Targeting ATR as cancer therapy: a new era for synthetic lethality and synergistic combinations? Pharmacol Ther 207:107450. https://doi.org/10.1016/j.pharmthera.2019.107450

Article  CAS  PubMed  Google Scholar 

Bridges CB (1922) The origin of variations in sexual and sex-limited characters. The American Naturalist 56(642):51–63

Article  Google Scholar 

Bridges KA, Hirai H, Buser CA, Brooks C, Liu H, Buchholz TA, Meyn RE (2011) MK-1775, a novel WEE1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Clin Cancer Res 17(17):5638–5648. https://doi.org/10.1158/1078-0432.Ccr-11-0650

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown JS, O’Carrigan B, Jackson SP, Yap TA (2017) Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov 7(1):20–37. https://doi.org/10.1158/2159-8290.Cd-16-0860

Article  CAS  PubMed  Google Scholar 

Bukhari AB, Lewis CW, Pearce JJ, Luong D, Chan GK, Gamper AM (2019) Inhibiting WEE1 and ATR kinases produces tumor-selective synthetic lethality and suppresses metastasis. J Clin Invest 129(3):1329–1344. https://doi.org/10.1172/jci122622

Article  PubMed  PubMed Central  Google Scholar 

Bukhari AB, Chan GK, Gamper AM (2022) Targeting the DNA damage response for cancer therapy by inhibiting the kinase WEE1. Frontiers in Oncology 12:828684. https://doi.org/10.3389/fonc.2022.828684

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bunting SF, Callén E, Wong N, Chen HT, Polato F, Gunn A, Nussenzweig A (2010) 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141(2):243–254. https://doi.org/10.1016/j.cell.2010.03.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgess BT, Anderson AM, McCorkle JR, Wu J, Ueland FR, Kolesar JM (2020) Olaparib combined with an ATR or Chk1 inhibitor as a treatment strategy for acquired olaparib-resistant BRCA1 mutant ovarian cells. Diagnostics (Basel) 10(2):121. https://doi.org/10.3390/diagnostics10020121

Article  CAS  PubMed  Google Scholar 

Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9(8):619–631. https://doi.org/10.1038/nrg2380

Article  PubMed  Google Scholar 

Caruso D, Papa A, Tomao S, Vici P, Panici PB, Tomao F (2017) Niraparib in ovarian cancer: results to date and clinical potential. Ther Adv Med Oncol 9(9):579–588. https://doi.org/10.1177/1758834017718775

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan DA, Giaccia AJ (2011) Harnessing synthetic lethal interactions in anticancer drug discovery. Nat Rev Drug Discov 10(5):351–364

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen A (2011) PARP inhibitors: its role in treatment of cancer. Chin J Cancer 30(7):463–471. https://doi.org/10.5732/cjc.011.10111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen M, Cai X (2020) Synthetic lethality is a novel and potential paradigm for precision medicine in advanced hepatocellular carcinoma. Liver Cancer 9(2):225–226.

Comments (0)

No login
gif