Effects of Statistical Practices for Longitudinal Group Comparison of the Penetration-Aspiration Scale on Power and Effect Size Estimation: A Monte Carlo Simulation Study

Hutcheson KA, Barrow MP, Barringer DA, Knott JK, Lin HY, Weber RS, et al. Dynamic imaging Grade of swallowing toxicity (DIGEST): scale development and validation. Cancer. 2017;123(1):62–70.

Article  PubMed  Google Scholar 

Martin-Harris B, Brodsky MB, Michel Y, Castell DO, Schleicher M, Sandidge J, et al. MBS measurement tool for swallow impairment—MBSImp: establishing a standard. Dysphagia. 2008;23:392–405.

Article  PubMed  PubMed Central  Google Scholar 

Baijens LWJ, Speyer R, Pilz W, Roodenburg N. FEES Protocol derived estimates of sensitivity: aspiration in dysphagic patients.:8.

Borders JC, Brates D. Use of the penetration-aspiration scale in Dysphagia Research: a systematic review. Dysphagia. 2019;35(4):583–97.

Article  PubMed  Google Scholar 

Hedström J, Tuomi L, Andersson M, Dotevall H, Osbeck H, Finizia C. Within-Bolus variability of the penetration-aspiration scale across two subsequent swallows in patients with Head and Neck Cancer. Dysphagia. 2017;32(5):683–90.

Article  PubMed  PubMed Central  Google Scholar 

Steele CM, Grace-Martin K. Reflections on clinical and statistical use of the penetration-aspiration scale. Dysphagia. 2017;32(5):601–16.

Article  PubMed  PubMed Central  Google Scholar 

Gelman A, Hill J. Data analysis using regression and multilevel/hierarchical models. Cambridge University Press; 2006.

Matuschek H, Kliegl R, Vasishth S, Baayen H, Bates D. Balancing type I error and power in linear mixed models. J Mem Lang. 2017;94:305–15.

Article  Google Scholar 

Borders JC, Grande AA, Troche MS. Statistical Power and Swallowing Rehabilitation Research: Current Landscape and Next Steps. Dysphagia [Internet]. 2022 Feb 28 [cited 2022 Feb 28]; https://doi.org/10.1007/s00455-022-10428-2.

Rosenbek JC, Robbins JA, Roecker EB, Coyle JL, Wood JL. A penetration-aspiration scale. Dysphagia. 1996;11:93–8.

Article  PubMed  CAS  Google Scholar 

McCullough G, Rosenbek J. Ordinality and intervality of a penetration-aspiration scale. 1998;6:65–72.

Roozenbeek B, Lingsma HF, Perel P, Edwards P, Roberts I, Murray GD, et al. The added value of ordinal analysis in clinical trials: an example in traumatic brain injury. Crit Care. 2011;15(3):1–7.

Article  Google Scholar 

Fedorov V, Mannino F, Zhang R. Consequences of dichotomization. Pharmaceut Statist. 2009;8(1):50–61.

Article  Google Scholar 

Altman DG, Royston P. The cost of dichotomising continuous variables. BMJ. 2006;332:1080.

Article  PubMed  PubMed Central  Google Scholar 

Thoresen M. Spurious interaction as a result of categorization. BMC Med Res Methodol. 2019;19(1):28.

Article  PubMed  PubMed Central  Google Scholar 

Altman DG. Problems in dichotomizing continuous variables. Am J Epidemiol. 1994;139(4):442.

Article  PubMed  CAS  Google Scholar 

Sankey SS, Weissfeld LA. A study of the effect of dichotomizing ordinal data upon modeling. Commun Stat - Simul Comput. 1998;27(4):871–87.

Article  Google Scholar 

Rouder JN, Lu J. An introduction to bayesian hierarchical models with an application in the theory of signal detection. Psychon Bull Rev. 2005;12(4):573–604.

Article  PubMed  Google Scholar 

Lee MD. How cognitive modeling can benefit from hierarchical bayesian models. J Math Psychol. 2011;55(1):1–7.

Article  Google Scholar 

Efron B, Morris C. Stein’s paradox in statistics. Sci Am. 1977;236(5):119–27.

Article  Google Scholar 

Goldfeld K, Wujciak-Jens J. Simstudy: Illuminating research methods through data generation. JOSS. 2020;5(54):2763.

Article  Google Scholar 

R Core Team. R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing. 2018. https://www.R-project.org/.

Murphy JM, Berwick DM, Weinstein MC, Borus JF, Budman SH, Klerman GL. Performance of screening and diagnostic tests: application of receiver operating characteristic analysis. Arch Gen Psychiatry. 1987;44(6):550–5.

Article  PubMed  CAS  Google Scholar 

Molfenter SM, Steele CM. Physiological variability in the deglutition literature: hyoid and laryngeal kinematics. Dysphagia. 2011;26(1):67–74.

Article  PubMed  Google Scholar 

Molfenter SM, Steele CM. Temporal variability in the deglutition literature. Dysphagia. 2012;27(2):162–77.

Article  PubMed  PubMed Central  Google Scholar 

Jones CA, Ciucci MR, Abdelhalim SM, McCulloch TM. Swallowing pressure variability as a function of Pharyngeal Region, Bolus volume, Age, and sex. The Laryngoscope. 2020;lary.28667.

Gelman A. Multilevel (hierarchical) modeling: what it can and cannot do. Technometrics. 2006;48(3):432–5.

Article  Google Scholar 

Silberzahn R, Uhlmann EL, Martin DP, Anselmi P, Aust F, Awtrey E, et al. Many analysts, one data set: making transparent how variations in analytic choices affect results. Adv Methods Practices Psychol Sci. 2018;1(3):337–56.

Article  Google Scholar 

Mancopes R, Smaoui S, Steele CM. Effects of Expiratory Muscle Strength Training on videofluoroscopic measures of swallowing: a systematic review. Am J Speech Lang Pathol. 2020;1–22.

dos Santos KW, da Cunha Rodrigues E, Rech RS, da Ros Wendland EM, Neves M, Hugo FN, et al. Using Voice Change as an Indicator of Dysphagia: a systematic review. Dysphagia. 2022;37(4):736–48.

Article  PubMed  Google Scholar 

El Amin M, Borders JC, Long HL, Keller MA, Kearney E. Open Science Practices in Communication Sciences and Disorders: A Survey. Journal of Speech, Language, and Hearing Research [Internet]. 2022 [cited 2022 Nov 23]; https://doi.org/10.1044/2022_JSLHR-22-00062.

Allen C, Mehler DM. Open Science challenges, benefits and tips in early career and beyond. PLoS Biol. 2019;17(5):1–13.

Article  Google Scholar 

Comments (0)

No login
gif