Deficiency of the sphingosine-1-phosphate (S1P) transporter Mfsd2b protects the heart against hypertension-induced cardiac remodeling by suppressing the L-type-Ca2+ channel

Bokoch GM, Reilly AM, Daniels RH, King CC, Olivera A, Spiegel S, Knaus UG (1998) A GTPase-independent mechanism of p21-activated kinase activation. Regulation by sphingosine and other biologically active lipids. J Biol Chem 273:8137–8144. https://doi.org/10.1074/jbc.273.14.8137

Article  CAS  PubMed  Google Scholar 

Burchfield JS, Xie M, Hill JA (2013) Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation 128:388–400. https://doi.org/10.1161/CIRCULATIONAHA.113.001878

Article  PubMed  PubMed Central  Google Scholar 

Cuspidi C, Sala C, Negri F, Mancia G, Morganti A (2012) Prevalence of left-ventricular hypertrophy in hypertension: an updated review of echocardiographic studies. J Hum Hypertens 26:343–349. https://doi.org/10.1038/jhh.2011.104

Article  CAS  PubMed  Google Scholar 

Davare MA, Horne MC, Hell JW (2000) Protein phosphatase 2A is associated with class C L-type calcium channels (Cav1.2) and antagonizes channel phosphorylation by cAMP-dependent protein kinase. J Biol Chem 275:39710–39717. https://doi.org/10.1074/jbc.M005462200

Article  CAS  PubMed  Google Scholar 

Drazner MH (2011) The progression of hypertensive heart disease. Circulation 123:327–334. https://doi.org/10.1161/CIRCULATIONAHA.108.845792

Article  PubMed  Google Scholar 

Egom EE, Bae JS, Capel R, Richards M, Ke Y, Pharithi RB, Maher V, Kruzliak P, Lei M (2016) Effect of sphingosine-1-phosphate on L-type calcium current and Ca(2+) transient in rat ventricular myocytes. Mol Cell Biochem 419:83–92. https://doi.org/10.1007/s11010-016-2752-8

Article  CAS  PubMed  Google Scholar 

Eisner DA, Caldwell JL, Kistamás K, Trafford AW (2017) Calcium and excitation-contraction coupling in the heart. Circ Res 121:181–195. https://doi.org/10.1161/CIRCRESAHA.117.310230

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eisner DA, Caldwell JL, Trafford AW, Hutchings DC (2020) The control of diastolic calcium in the heart. Circ Res 126:395–412. https://doi.org/10.1161/CIRCRESAHA.119.315891

Article  CAS  PubMed  PubMed Central  Google Scholar 

Erkens R, Kramer CM, Lückstädt W, Panknin C, Krause L, Weidenbach M, Dirzka J, Krenz T, Mergia E, Suvorava T, Kelm M, Cortese-Krott MM (2015) Left ventricular diastolic dysfunction in Nrf2 knock out mice is associated with cardiac hypertrophy, decreased expression of SERCA2a, and preserved endothelial function. Free Radic Biol Med 89:906–917. https://doi.org/10.1016/j.freeradbiomed.2015.10.409

Article  CAS  PubMed  Google Scholar 

Fang R, Zhang LL, Zhang LZ, Li W, Li M, Wen K (2017) Sphingosine 1-phosphate postconditioning protects against myocardial ischemia/reperfusion injury in rats via mitochondrial signaling and akt-gsk3β phosphorylation. Arch Med Res 48:147–155. https://doi.org/10.1016/j.arcmed.2017.03.013

Article  CAS  PubMed  Google Scholar 

Fukuhara S, Simmons S, Kawamura S, Inoue A, Orba Y, Tokudome T, Sunden Y, Arai Y, Moriwaki K, Ishida J, Uemura A, Kiyonari H, Abe T, Fukamizu A, Hirashima M, Sawa H, Aoki J, Ishii M, Mochizuki N (2012) The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J Clin Invest 122:1416–1426. https://doi.org/10.1172/jci60746

Article  CAS  PubMed  PubMed Central  Google Scholar 

Funk F, Kronenbitter A, Isic M, Flocke V, Gorressen S, Semmler D, Brinkmann M, Beck K, Steinhoff O, Srivastava T, Barbosa DM, Voigt K, Wang L, Bottermann K, Kotter S, Grandoch M, Flogel U, Kruger M, Schmitt JP (2022) Diabetes disturbs functional adaptation of the remote myocardium after ischemia/reperfusion. J Mol Cell Cardiol 173:47–60. https://doi.org/10.1016/j.yjmcc.2022.09.002

Article  CAS  PubMed  Google Scholar 

Gorski PA, Ceholski DK, Hajjar RJ (2015) Altered myocardial calcium cycling and energetics in heart failure—a rational approach for disease treatment. Cell Metab 21:183–194. https://doi.org/10.1016/j.cmet.2015.01.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guenther GG, Peralta ER, Rosales KR, Wong SY, Siskind LJ, Edinger AL (2008) Ceramide starves cells to death by downregulating nutrient transporter proteins. Proc Natl Acad Sci USA 105:17402–17407. https://doi.org/10.1073/pnas.0802781105

Article  PubMed  PubMed Central  Google Scholar 

Habrukowich C, Han DK, Le A, Rezaul K, Pan W, Ghosh M, Li Z, Dodge-Kafka K, Jiang X, Bittman R, Hla T (2010) Sphingosine interaction with acidic leucine-rich nuclear phosphoprotein-32A (ANP32A) regulates PP2A activity and cyclooxygenase (COX)-2 expression in human endothelial cells. J Biol Chem 285:26825–26831. https://doi.org/10.1074/jbc.M110.147058

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hall DD, Feekes JA, Arachchige Don AS, Shi M, Hamid J, Chen L, Strack S, Zamponi GW, Horne MC, Hell JW (2006) Binding of protein phosphatase 2A to the L-type calcium channel Cav1.2 next to Ser 1928, its main PKA site, is critical for Ser1928 dephosphorylation. Biochemistry 45:3448–3459. https://doi.org/10.1021/bi051593z

Article  CAS  PubMed  Google Scholar 

Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, Opie L (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383:1933–1943. https://doi.org/10.1016/s0140-6736(14)60107-0

Article  PubMed  PubMed Central  Google Scholar 

Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358:1370–1380. https://doi.org/10.1056/NEJMra072139

Article  CAS  PubMed  Google Scholar 

Jin Z-Q, Zhang J, Huang Y, Hoover HE, Vessey DA, Karliner JS (2007) A sphingosine kinase 1 mutation sensitizes the myocardium to ischemia/reperfusion injury. Cardiovasc Res 76:41–50. https://doi.org/10.1016/j.cardiores.2007.05.029

Article  CAS  PubMed  Google Scholar 

Józefczuk E, Nosalski R, Saju B, Crespo E, Szczepaniak P, Guzik TJ, Siedlinski M (2020) Cardiovascular effects of pharmacological targeting of sphingosine kinase 1. Hypertension 75:383–392. https://doi.org/10.1161/HYPERTENSIONAHA.119.13450

Article  CAS  PubMed  Google Scholar 

Jujic A, Matthes F, Vanherle L, Petzka H, Orho-Melander M, Nilsson PM, Magnusson M, Meissner A (2021) Plasma S1P (sphingosine-1-phosphate) links to hypertension and biomarkers of inflammation and cardiovascular disease: findings from a translational investigation. Hypertension 78:195–209. https://doi.org/10.1161/HYPERTENSIONAHA.120.17379

Article  CAS  PubMed  Google Scholar 

Juraszek B, Nalecz KA (2016) Protein phosphatase PP2A—a novel interacting partner of carnitine transporter OCTN2 (SLC22A5) in rat astrocytes. J Neurochem 139:537–551. https://doi.org/10.1111/jnc.13777

Article  CAS  PubMed  Google Scholar 

Ke Y, Lei M, Solaro RJ (2008) Regulation of cardiac excitation and contraction by p21 activated kinase-1. Prog Biophys Mol Biol 98:238–250. https://doi.org/10.1016/j.pbiomolbio.2009.01.007

Article  CAS  PubMed  Google Scholar 

Keul P, Sattler K, Levkau B (2007) HDL and its sphingosine-1-phosphate content in cardioprotection. Heart Fail Rev 12:301–306. https://doi.org/10.1007/s10741-007-9038-x

Article  CAS  PubMed  Google Scholar 

Keul P, van Borren MM, Ghanem A, Müller FU, Baartscheer A, Verkerk AO, Stümpel F, Schulte JS, Hamdani N, Linke WA, van Loenen P, Matus M, Schmitz W, Stypmann J, Tiemann K, Ravesloot JH, Alewijnse AE, Hermann S, Spijkers LJ, Hiller KH, Herr D, Heusch G, Schäfers M, Peters SL, Chun J, Levkau B (2016) Sphingosine-1-phosphate receptor 1 regulates cardiac function by modulating Ca2+ sensitivity and Na+/H+ exchange and mediates protection by ischemic preconditioning. J Am Heart Assoc 5:e003393. https://doi.org/10.1161/jaha.116.003393

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif